zola/components/imageproc/src/lib.rs
traviscross 46ee256ba4 Fix clippy warnings (#744)
Clippy is returning some warnings.  Let's fix or explicitly ignore
them.  In particular:

- In `components/imageproc/src/lib.rs`, we implement `Hash` explicitly
  but derive `PartialEq`.  We need to maintain the property that two
  keys being equal implies the hashes of those two keys are equal.
  Our `Hash` implementations preserve this, so we'll explicitly ignore
  the warnings.

- In `components/site/src/lib.rs`, we were calling `.into()` on some
  values that are already of the correct type.

- In `components/site/src/lib.rs`, we were using `.map(|x| *x)` in
  iterator chains to remove a level of indirection; we can instead say
  `.copied()` (introduced in Rust v1.36) or `.cloned()`.  Using
  `.copied` here is better from a type-checking point of view, but
  we'll use `.cloned` for now as Rust v1.36 was only recently
  released.

- In `components/templates/src/filters.rs` and
  `components/utils/src/site.rs`, we were taking `HashMap`s as
  function arguments but not generically accepting alternate `Hasher`
  implementations.

- In `src/cmd/check.rs`, we use `env::current_dir()` as a default
  value, but our use of `unwrap_or` meant that we would always
  retrieve the current directory even when not needed.

- In `components/errors/src/lib.rs`, we can use `if let` rather than
  `match`.

- In `components/library/src/content/page.rs`, we can collapse a
  nested conditional into `else if let ...`.

- In `components/library/src/sorting.rs`, a function takes `&&Page`
  arguments.  Clippy warns about this for efficiency reasons, but
  we're doing it here to match a particular sorting API, so we'll
  explicitly ignore the warning.
2019-07-12 22:54:18 +02:00

470 lines
16 KiB
Rust

#[macro_use]
extern crate lazy_static;
extern crate image;
extern crate rayon;
extern crate regex;
extern crate errors;
extern crate utils;
use std::collections::hash_map::DefaultHasher;
use std::collections::hash_map::Entry as HEntry;
use std::collections::HashMap;
use std::fs::{self, File};
use std::hash::{Hash, Hasher};
use std::path::{Path, PathBuf};
use image::jpeg::JPEGEncoder;
use image::png::PNGEncoder;
use image::{FilterType, GenericImageView};
use rayon::prelude::*;
use regex::Regex;
use errors::{Error, Result};
use utils::fs as ufs;
static RESIZED_SUBDIR: &'static str = "processed_images";
lazy_static! {
pub static ref RESIZED_FILENAME: Regex =
Regex::new(r#"([0-9a-f]{16})([0-9a-f]{2})[.](jpg|png)"#).unwrap();
}
/// Describes the precise kind of a resize operation
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum ResizeOp {
/// A simple scale operation that doesn't take aspect ratio into account
Scale(u32, u32),
/// Scales the image to a specified width with height computed such
/// that aspect ratio is preserved
FitWidth(u32),
/// Scales the image to a specified height with width computed such
/// that aspect ratio is preserved
FitHeight(u32),
/// Scales the image such that it fits within the specified width and
/// height preserving aspect ratio.
/// Either dimension may end up being smaller, but never larger than specified.
Fit(u32, u32),
/// Scales the image such that it fills the specified width and height.
/// Output will always have the exact dimensions specified.
/// The part of the image that doesn't fit in the thumbnail due to differing
/// aspect ratio will be cropped away, if any.
Fill(u32, u32),
}
impl ResizeOp {
pub fn from_args(op: &str, width: Option<u32>, height: Option<u32>) -> Result<ResizeOp> {
use ResizeOp::*;
// Validate args:
match op {
"fit_width" => {
if width.is_none() {
return Err("op=\"fit_width\" requires a `width` argument".to_string().into());
}
}
"fit_height" => {
if height.is_none() {
return Err("op=\"fit_height\" requires a `height` argument"
.to_string()
.into());
}
}
"scale" | "fit" | "fill" => {
if width.is_none() || height.is_none() {
return Err(
format!("op={} requires a `width` and `height` argument", op).into()
);
}
}
_ => return Err(format!("Invalid image resize operation: {}", op).into()),
};
Ok(match op {
"scale" => Scale(width.unwrap(), height.unwrap()),
"fit_width" => FitWidth(width.unwrap()),
"fit_height" => FitHeight(height.unwrap()),
"fit" => Fit(width.unwrap(), height.unwrap()),
"fill" => Fill(width.unwrap(), height.unwrap()),
_ => unreachable!(),
})
}
pub fn width(self) -> Option<u32> {
use ResizeOp::*;
match self {
Scale(w, _) => Some(w),
FitWidth(w) => Some(w),
FitHeight(_) => None,
Fit(w, _) => Some(w),
Fill(w, _) => Some(w),
}
}
pub fn height(self) -> Option<u32> {
use ResizeOp::*;
match self {
Scale(_, h) => Some(h),
FitWidth(_) => None,
FitHeight(h) => Some(h),
Fit(_, h) => Some(h),
Fill(_, h) => Some(h),
}
}
}
impl From<ResizeOp> for u8 {
fn from(op: ResizeOp) -> u8 {
use ResizeOp::*;
match op {
Scale(_, _) => 1,
FitWidth(_) => 2,
FitHeight(_) => 3,
Fit(_, _) => 4,
Fill(_, _) => 5,
}
}
}
#[allow(clippy::derive_hash_xor_eq)]
impl Hash for ResizeOp {
fn hash<H: Hasher>(&self, hasher: &mut H) {
hasher.write_u8(u8::from(*self));
if let Some(w) = self.width() {
hasher.write_u32(w);
}
if let Some(h) = self.height() {
hasher.write_u32(h);
}
}
}
/// Thumbnail image format
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum Format {
/// JPEG, The `u8` argument is JPEG quality (in percent).
Jpeg(u8),
/// PNG
Png,
}
impl Format {
pub fn from_args(source: &str, format: &str, quality: u8) -> Result<Format> {
use Format::*;
assert!(quality > 0 && quality <= 100, "Jpeg quality must be within the range [1; 100]");
match format {
"auto" => match Self::is_lossy(source) {
Some(true) => Ok(Jpeg(quality)),
Some(false) => Ok(Png),
None => Err(format!("Unsupported image file: {}", source).into()),
},
"jpeg" | "jpg" => Ok(Jpeg(quality)),
"png" => Ok(Png),
_ => Err(format!("Invalid image format: {}", format).into()),
}
}
/// Looks at file's extension and, if it's a supported image format, returns whether the format is lossless
pub fn is_lossy<P: AsRef<Path>>(p: P) -> Option<bool> {
p.as_ref()
.extension()
.and_then(std::ffi::OsStr::to_str)
.map(|ext| match ext.to_lowercase().as_str() {
"jpg" | "jpeg" => Some(true),
"png" => Some(false),
"gif" => Some(false),
"bmp" => Some(false),
_ => None,
})
.unwrap_or(None)
}
fn extension(&self) -> &str {
// Kept in sync with RESIZED_FILENAME and op_filename
use Format::*;
match *self {
Png => "png",
Jpeg(_) => "jpg",
}
}
}
#[allow(clippy::derive_hash_xor_eq)]
impl Hash for Format {
fn hash<H: Hasher>(&self, hasher: &mut H) {
use Format::*;
let q = match *self {
Png => 0,
Jpeg(q) => q,
};
hasher.write_u8(q);
}
}
/// Holds all data needed to perform a resize operation
#[derive(Debug, PartialEq, Eq)]
pub struct ImageOp {
source: String,
op: ResizeOp,
format: Format,
/// Hash of the above parameters
hash: u64,
/// If there is a hash collision with another ImageOp, this contains a sequential ID > 1
/// identifying the collision in the order as encountered (which is essentially random).
/// Therefore, ImageOps with collisions (ie. collision_id > 0) are always considered out of date.
/// Note that this is very unlikely to happen in practice
collision_id: u32,
}
impl ImageOp {
pub fn new(source: String, op: ResizeOp, format: Format) -> ImageOp {
let mut hasher = DefaultHasher::new();
hasher.write(source.as_ref());
op.hash(&mut hasher);
format.hash(&mut hasher);
let hash = hasher.finish();
ImageOp { source, op, format, hash, collision_id: 0 }
}
pub fn from_args(
source: String,
op: &str,
width: Option<u32>,
height: Option<u32>,
format: &str,
quality: u8,
) -> Result<ImageOp> {
let op = ResizeOp::from_args(op, width, height)?;
let format = Format::from_args(&source, format, quality)?;
Ok(Self::new(source, op, format))
}
fn perform(&self, content_path: &Path, target_path: &Path) -> Result<()> {
use ResizeOp::*;
let src_path = content_path.join(&self.source);
if !ufs::file_stale(&src_path, target_path) {
return Ok(());
}
let mut img = image::open(&src_path)?;
let (img_w, img_h) = img.dimensions();
const RESIZE_FILTER: FilterType = FilterType::Lanczos3;
const RATIO_EPSILLION: f32 = 0.1;
let img = match self.op {
Scale(w, h) => img.resize_exact(w, h, RESIZE_FILTER),
FitWidth(w) => img.resize(w, u32::max_value(), RESIZE_FILTER),
FitHeight(h) => img.resize(u32::max_value(), h, RESIZE_FILTER),
Fit(w, h) => img.resize(w, h, RESIZE_FILTER),
Fill(w, h) => {
let factor_w = img_w as f32 / w as f32;
let factor_h = img_h as f32 / h as f32;
if (factor_w - factor_h).abs() <= RATIO_EPSILLION {
// If the horizontal and vertical factor is very similar,
// that means the aspect is similar enough that there's not much point
// in cropping, so just perform a simple scale in this case.
img.resize_exact(w, h, RESIZE_FILTER)
} else {
// We perform the fill such that a crop is performed first
// and then resize_exact can be used, which should be cheaper than
// resizing and then cropping (smaller number of pixels to resize).
let (crop_w, crop_h) = if factor_w < factor_h {
(img_w, (factor_w * h as f32).round() as u32)
} else {
((factor_h * w as f32).round() as u32, img_h)
};
let (offset_w, offset_h) = if factor_w < factor_h {
(0, (img_h - crop_h) / 2)
} else {
((img_w - crop_w) / 2, 0)
};
img.crop(offset_w, offset_h, crop_w, crop_h).resize_exact(w, h, RESIZE_FILTER)
}
}
};
let mut f = File::create(target_path)?;
let (img_w, img_h) = img.dimensions();
match self.format {
Format::Png => {
let enc = PNGEncoder::new(&mut f);
enc.encode(&img.raw_pixels(), img_w, img_h, img.color())?;
}
Format::Jpeg(q) => {
let mut enc = JPEGEncoder::new_with_quality(&mut f, q);
enc.encode(&img.raw_pixels(), img_w, img_h, img.color())?;
}
}
Ok(())
}
}
/// A strcture into which image operations can be enqueued and then performed.
/// All output is written in a subdirectory in `static_path`,
/// taking care of file stale status based on timestamps and possible hash collisions.
#[derive(Debug)]
pub struct Processor {
content_path: PathBuf,
resized_path: PathBuf,
resized_url: String,
/// A map of a ImageOps by their stored hash.
/// Note that this cannot be a HashSet, because hashset handles collisions and we don't want that,
/// we need to be aware of and handle collisions ourselves.
img_ops: HashMap<u64, ImageOp>,
/// Hash collisions go here:
img_ops_collisions: Vec<ImageOp>,
}
impl Processor {
pub fn new(content_path: PathBuf, static_path: &Path, base_url: &str) -> Processor {
Processor {
content_path,
resized_path: static_path.join(RESIZED_SUBDIR),
resized_url: Self::resized_url(base_url),
img_ops: HashMap::new(),
img_ops_collisions: Vec::new(),
}
}
fn resized_url(base_url: &str) -> String {
if base_url.ends_with('/') {
format!("{}{}", base_url, RESIZED_SUBDIR)
} else {
format!("{}/{}", base_url, RESIZED_SUBDIR)
}
}
pub fn set_base_url(&mut self, base_url: &str) {
self.resized_url = Self::resized_url(base_url);
}
pub fn source_exists(&self, source: &str) -> bool {
self.content_path.join(source).exists()
}
pub fn num_img_ops(&self) -> usize {
self.img_ops.len() + self.img_ops_collisions.len()
}
fn insert_with_collisions(&mut self, mut img_op: ImageOp) -> u32 {
match self.img_ops.entry(img_op.hash) {
HEntry::Occupied(entry) => {
if *entry.get() == img_op {
return 0;
}
}
HEntry::Vacant(entry) => {
entry.insert(img_op);
return 0;
}
}
// If we get here, that means a hash collision.
// This is detected when there is an ImageOp with the same hash in the `img_ops`
// map but which is not equal to this one.
// To deal with this, all collisions get a (random) sequential ID number.
// First try to look up this ImageOp in `img_ops_collisions`, maybe we've
// already seen the same ImageOp.
// At the same time, count IDs to figure out the next free one.
// Start with the ID of 2, because we'll need to use 1 for the ImageOp
// already present in the map:
let mut collision_id = 2;
for op in self.img_ops_collisions.iter().filter(|op| op.hash == img_op.hash) {
if *op == img_op {
// This is a colliding ImageOp, but we've already seen an equal one
// (not just by hash, but by content too), so just return its ID:
return collision_id;
} else {
collision_id += 1;
}
}
// If we get here, that means this is a new colliding ImageOp and
// `collision_id` is the next free ID
if collision_id == 2 {
// This is the first collision found with this hash, update the ID
// of the matching ImageOp in the map.
self.img_ops.get_mut(&img_op.hash).unwrap().collision_id = 1;
}
img_op.collision_id = collision_id;
self.img_ops_collisions.push(img_op);
collision_id
}
fn op_filename(hash: u64, collision_id: u32, format: Format) -> String {
// Please keep this in sync with RESIZED_FILENAME
assert!(collision_id < 256, "Unexpectedly large number of collisions: {}", collision_id);
format!("{:016x}{:02x}.{}", hash, collision_id, format.extension())
}
fn op_url(&self, hash: u64, collision_id: u32, format: Format) -> String {
format!("{}/{}", &self.resized_url, Self::op_filename(hash, collision_id, format))
}
pub fn insert(&mut self, img_op: ImageOp) -> String {
let hash = img_op.hash;
let format = img_op.format;
let collision_id = self.insert_with_collisions(img_op);
self.op_url(hash, collision_id, format)
}
pub fn prune(&self) -> Result<()> {
// Do not create folders if they don't exist
if !self.resized_path.exists() {
return Ok(());
}
ufs::ensure_directory_exists(&self.resized_path)?;
let entries = fs::read_dir(&self.resized_path)?;
for entry in entries {
let entry_path = entry?.path();
if entry_path.is_file() {
let filename = entry_path.file_name().unwrap().to_string_lossy();
if let Some(capts) = RESIZED_FILENAME.captures(filename.as_ref()) {
let hash = u64::from_str_radix(capts.get(1).unwrap().as_str(), 16).unwrap();
let collision_id =
u32::from_str_radix(capts.get(2).unwrap().as_str(), 16).unwrap();
if collision_id > 0 || !self.img_ops.contains_key(&hash) {
fs::remove_file(&entry_path)?;
}
}
}
}
Ok(())
}
pub fn do_process(&mut self) -> Result<()> {
if !self.img_ops.is_empty() {
ufs::ensure_directory_exists(&self.resized_path)?;
}
self.img_ops
.par_iter()
.map(|(hash, op)| {
let target =
self.resized_path.join(Self::op_filename(*hash, op.collision_id, op.format));
op.perform(&self.content_path, &target)
.map_err(|e| Error::chain(format!("Failed to process image: {}", op.source), e))
})
.collect::<Result<()>>()
}
}