35 lines
866 B
Agda
35 lines
866 B
Agda
|
module Category.Sets where
|
|||
|
|
|||
|
open import Cubical.PathPrelude
|
|||
|
open import Agda.Primitive
|
|||
|
open import Category
|
|||
|
|
|||
|
-- Sets are built-in to Agda. The set of all small sets is called Set.
|
|||
|
|
|||
|
Fun : {ℓ : Level} → ( T U : Set ℓ ) → Set ℓ
|
|||
|
Fun T U = T → U
|
|||
|
|
|||
|
Sets : {ℓ : Level} → Category {lsuc ℓ} {ℓ}
|
|||
|
Sets {ℓ} = record
|
|||
|
{ Object = Set ℓ
|
|||
|
; Arrow = λ T U → Fun {ℓ} T U
|
|||
|
; 𝟙 = λ x → x
|
|||
|
; _⊕_ = λ g f x → g ( f x )
|
|||
|
; assoc = refl
|
|||
|
; ident = funExt (λ x → refl) , funExt (λ x → refl)
|
|||
|
}
|
|||
|
|
|||
|
module _ {ℓ ℓ' : Level} {ℂ : Category {ℓ} {ℓ}} where
|
|||
|
private
|
|||
|
C-Obj = Object ℂ
|
|||
|
_+_ = Arrow ℂ
|
|||
|
|
|||
|
RepFunctor : Functor ℂ Sets
|
|||
|
RepFunctor =
|
|||
|
record
|
|||
|
{ F = λ A → (B : C-Obj) → Hom {ℂ = ℂ} A B
|
|||
|
; f = λ { {c' = c'} f g → {!HomFromArrow {ℂ = } c' g!}}
|
|||
|
; ident = {!!}
|
|||
|
; distrib = {!!}
|
|||
|
}
|