2018-03-12 13:38:52 +00:00
|
|
|
|
{-
|
|
|
|
|
This module provides construction 2.3 in [voe]
|
|
|
|
|
-}
|
2018-03-12 13:04:10 +00:00
|
|
|
|
{-# OPTIONS --cubical --allow-unsolved-metas #-}
|
|
|
|
|
module Cat.Category.Monad.Voevodsky where
|
|
|
|
|
|
|
|
|
|
open import Agda.Primitive
|
|
|
|
|
|
|
|
|
|
open import Data.Product
|
|
|
|
|
|
|
|
|
|
open import Cubical
|
|
|
|
|
open import Cubical.NType.Properties using (lemPropF ; lemSig ; lemSigP)
|
|
|
|
|
open import Cubical.GradLemma using (gradLemma)
|
|
|
|
|
|
|
|
|
|
open import Cat.Category
|
|
|
|
|
open import Cat.Category.Functor as F
|
|
|
|
|
open import Cat.Category.NaturalTransformation
|
2018-03-12 13:20:49 +00:00
|
|
|
|
open import Cat.Category.Monad using (Monoidal≃Kleisli)
|
|
|
|
|
import Cat.Category.Monad.Monoidal as Monoidal
|
|
|
|
|
import Cat.Category.Monad.Kleisli as Kleisli
|
2018-03-12 13:04:10 +00:00
|
|
|
|
open import Cat.Categories.Fun
|
|
|
|
|
|
2018-03-12 13:38:52 +00:00
|
|
|
|
module voe {ℓa ℓb : Level} (ℂ : Category ℓa ℓb) where
|
2018-03-12 13:04:10 +00:00
|
|
|
|
private
|
|
|
|
|
ℓ = ℓa ⊔ ℓb
|
|
|
|
|
module ℂ = Category ℂ
|
2018-03-12 13:38:52 +00:00
|
|
|
|
open ℂ using (Object ; Arrow)
|
2018-03-12 13:04:10 +00:00
|
|
|
|
open NaturalTransformation ℂ ℂ
|
2018-03-12 13:38:52 +00:00
|
|
|
|
open import Function using (_∘_ ; _$_)
|
2018-03-12 13:04:10 +00:00
|
|
|
|
module M = Monoidal ℂ
|
|
|
|
|
module K = Kleisli ℂ
|
|
|
|
|
|
2018-03-12 13:38:52 +00:00
|
|
|
|
module §2-3 (omap : Omap ℂ ℂ) (pure : {X : Object} → Arrow X (omap X)) where
|
|
|
|
|
record §1 : Set ℓ where
|
2018-03-12 13:04:10 +00:00
|
|
|
|
open M
|
|
|
|
|
|
|
|
|
|
field
|
|
|
|
|
fmap : Fmap ℂ ℂ omap
|
|
|
|
|
join : {A : Object} → ℂ [ omap (omap A) , omap A ]
|
|
|
|
|
|
|
|
|
|
Rraw : RawFunctor ℂ ℂ
|
|
|
|
|
Rraw = record
|
|
|
|
|
{ omap = omap
|
|
|
|
|
; fmap = fmap
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
field
|
|
|
|
|
RisFunctor : IsFunctor ℂ ℂ Rraw
|
|
|
|
|
|
|
|
|
|
R : EndoFunctor ℂ
|
|
|
|
|
R = record
|
|
|
|
|
{ raw = Rraw
|
|
|
|
|
; isFunctor = RisFunctor
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
pureT : (X : Object) → Arrow X (omap X)
|
|
|
|
|
pureT X = pure {X}
|
|
|
|
|
|
|
|
|
|
field
|
|
|
|
|
pureN : Natural F.identity R pureT
|
|
|
|
|
|
|
|
|
|
pureNT : NaturalTransformation F.identity R
|
|
|
|
|
pureNT = pureT , pureN
|
|
|
|
|
|
|
|
|
|
joinT : (A : Object) → ℂ [ omap (omap A) , omap A ]
|
|
|
|
|
joinT A = join {A}
|
|
|
|
|
|
|
|
|
|
field
|
|
|
|
|
joinN : Natural F[ R ∘ R ] R joinT
|
|
|
|
|
|
|
|
|
|
joinNT : NaturalTransformation F[ R ∘ R ] R
|
|
|
|
|
joinNT = joinT , joinN
|
|
|
|
|
|
|
|
|
|
rawMnd : RawMonad
|
|
|
|
|
rawMnd = record
|
|
|
|
|
{ R = R
|
|
|
|
|
; pureNT = pureNT
|
|
|
|
|
; joinNT = joinNT
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
field
|
|
|
|
|
isMnd : IsMonad rawMnd
|
|
|
|
|
|
|
|
|
|
toMonad : Monad
|
|
|
|
|
toMonad = record
|
|
|
|
|
{ raw = rawMnd
|
|
|
|
|
; isMonad = isMnd
|
|
|
|
|
}
|
|
|
|
|
|
2018-03-12 13:38:52 +00:00
|
|
|
|
record §2 : Set ℓ where
|
2018-03-12 13:04:10 +00:00
|
|
|
|
open K
|
|
|
|
|
|
|
|
|
|
field
|
|
|
|
|
bind : {X Y : Object} → ℂ [ X , omap Y ] → ℂ [ omap X , omap Y ]
|
|
|
|
|
|
|
|
|
|
rawMnd : RawMonad
|
|
|
|
|
rawMnd = record
|
|
|
|
|
{ omap = omap
|
|
|
|
|
; pure = pure
|
|
|
|
|
; bind = bind
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
field
|
|
|
|
|
isMnd : IsMonad rawMnd
|
|
|
|
|
|
|
|
|
|
toMonad : Monad
|
|
|
|
|
toMonad = record
|
|
|
|
|
{ raw = rawMnd
|
|
|
|
|
; isMonad = isMnd
|
|
|
|
|
}
|
|
|
|
|
|
2018-03-12 13:43:43 +00:00
|
|
|
|
§1-fromMonad : (m : M.Monad) → §2-3.§1 (M.Monad.Romap m) (λ {X} → M.Monad.pureT m X)
|
2018-03-12 13:38:52 +00:00
|
|
|
|
-- voe-2-3-1-fromMonad : (m : M.Monad) → voe.§2-3.§1 (M.Monad.Romap m) (λ {X} → M.Monad.pureT m X)
|
2018-03-12 13:43:43 +00:00
|
|
|
|
§1-fromMonad m = record
|
2018-03-12 13:04:10 +00:00
|
|
|
|
{ fmap = Functor.fmap R
|
|
|
|
|
; RisFunctor = Functor.isFunctor R
|
|
|
|
|
; pureN = pureN
|
|
|
|
|
; join = λ {X} → joinT X
|
|
|
|
|
; joinN = joinN
|
|
|
|
|
; isMnd = M.Monad.isMonad m
|
|
|
|
|
}
|
|
|
|
|
where
|
|
|
|
|
raw = M.Monad.raw m
|
|
|
|
|
R = M.RawMonad.R raw
|
|
|
|
|
pureT = M.RawMonad.pureT raw
|
|
|
|
|
pureN = M.RawMonad.pureN raw
|
|
|
|
|
joinT = M.RawMonad.joinT raw
|
|
|
|
|
joinN = M.RawMonad.joinN raw
|
|
|
|
|
|
2018-03-12 13:43:43 +00:00
|
|
|
|
§2-fromMonad : (m : K.Monad) → §2-3.§2 (K.Monad.omap m) (K.Monad.pure m)
|
|
|
|
|
§2-fromMonad m = record
|
2018-03-12 13:04:10 +00:00
|
|
|
|
{ bind = K.Monad.bind m
|
|
|
|
|
; isMnd = K.Monad.isMonad m
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
module _ (omap : Omap ℂ ℂ) (pure : {X : Object} → Arrow X (omap X)) where
|
|
|
|
|
private
|
|
|
|
|
Monoidal→Kleisli : M.Monad → K.Monad
|
|
|
|
|
Monoidal→Kleisli = proj₁ Monoidal≃Kleisli
|
|
|
|
|
|
|
|
|
|
Kleisli→Monoidal : K.Monad → M.Monad
|
|
|
|
|
Kleisli→Monoidal = inverse Monoidal≃Kleisli
|
|
|
|
|
|
2018-03-12 13:38:52 +00:00
|
|
|
|
forth : §2-3.§1 omap pure → §2-3.§2 omap pure
|
2018-03-12 13:43:43 +00:00
|
|
|
|
forth = §2-fromMonad ∘ Monoidal→Kleisli ∘ §2-3.§1.toMonad
|
2018-03-12 13:04:10 +00:00
|
|
|
|
|
2018-03-12 13:38:52 +00:00
|
|
|
|
back : §2-3.§2 omap pure → §2-3.§1 omap pure
|
2018-03-12 13:43:43 +00:00
|
|
|
|
back = §1-fromMonad ∘ Kleisli→Monoidal ∘ §2-3.§2.toMonad
|
2018-03-12 13:04:10 +00:00
|
|
|
|
|
|
|
|
|
forthEq : ∀ m → _ ≡ _
|
|
|
|
|
forthEq m = begin
|
|
|
|
|
(forth ∘ back) m ≡⟨⟩
|
|
|
|
|
-- In full gory detail:
|
2018-03-12 13:43:43 +00:00
|
|
|
|
( §2-fromMonad
|
2018-03-12 13:04:10 +00:00
|
|
|
|
∘ Monoidal→Kleisli
|
2018-03-12 13:38:52 +00:00
|
|
|
|
∘ §2-3.§1.toMonad
|
2018-03-12 13:43:43 +00:00
|
|
|
|
∘ §1-fromMonad
|
2018-03-12 13:04:10 +00:00
|
|
|
|
∘ Kleisli→Monoidal
|
2018-03-12 13:38:52 +00:00
|
|
|
|
∘ §2-3.§2.toMonad
|
2018-03-12 13:04:10 +00:00
|
|
|
|
) m ≡⟨⟩ -- fromMonad and toMonad are inverses
|
2018-03-12 13:43:43 +00:00
|
|
|
|
( §2-fromMonad
|
2018-03-12 13:04:10 +00:00
|
|
|
|
∘ Monoidal→Kleisli
|
|
|
|
|
∘ Kleisli→Monoidal
|
2018-03-12 13:38:52 +00:00
|
|
|
|
∘ §2-3.§2.toMonad
|
2018-03-12 13:04:10 +00:00
|
|
|
|
) m ≡⟨ u ⟩
|
|
|
|
|
-- Monoidal→Kleisli and Kleisli→Monoidal are inverses
|
|
|
|
|
-- I should be able to prove this using congruence and `lem` below.
|
2018-03-12 13:43:43 +00:00
|
|
|
|
( §2-fromMonad
|
2018-03-12 13:38:52 +00:00
|
|
|
|
∘ §2-3.§2.toMonad
|
2018-03-12 13:04:10 +00:00
|
|
|
|
) m ≡⟨⟩
|
2018-03-12 13:43:43 +00:00
|
|
|
|
( §2-fromMonad
|
2018-03-12 13:38:52 +00:00
|
|
|
|
∘ §2-3.§2.toMonad
|
2018-03-12 13:04:10 +00:00
|
|
|
|
) m ≡⟨⟩ -- fromMonad and toMonad are inverses
|
|
|
|
|
m ∎
|
|
|
|
|
where
|
|
|
|
|
lem : Monoidal→Kleisli ∘ Kleisli→Monoidal ≡ Function.id
|
|
|
|
|
lem = {!!} -- verso-recto Monoidal≃Kleisli
|
2018-03-12 15:00:27 +00:00
|
|
|
|
t : (§2-fromMonad ∘ (Monoidal→Kleisli ∘ Kleisli→Monoidal) ∘ §2-3.§2.toMonad)
|
|
|
|
|
≡ (§2-fromMonad ∘ §2-3.§2.toMonad)
|
|
|
|
|
t = cong (λ φ → §2-fromMonad ∘ (λ{ {ω} → φ {{!????!}}}) ∘ §2-3.§2.toMonad) {!lem!}
|
|
|
|
|
u : (§2-fromMonad ∘ (Monoidal→Kleisli ∘ Kleisli→Monoidal) ∘ §2-3.§2.toMonad) m
|
|
|
|
|
≡ (§2-fromMonad ∘ §2-3.§2.toMonad) m
|
|
|
|
|
u = cong (λ φ → φ m) t
|
2018-03-12 13:04:10 +00:00
|
|
|
|
|
|
|
|
|
backEq : ∀ m → (back ∘ forth) m ≡ m
|
|
|
|
|
backEq m = begin
|
|
|
|
|
(back ∘ forth) m ≡⟨⟩
|
2018-03-12 13:43:43 +00:00
|
|
|
|
( §1-fromMonad
|
2018-03-12 13:04:10 +00:00
|
|
|
|
∘ Kleisli→Monoidal
|
2018-03-12 13:38:52 +00:00
|
|
|
|
∘ §2-3.§2.toMonad
|
2018-03-12 13:43:43 +00:00
|
|
|
|
∘ §2-fromMonad
|
2018-03-12 13:04:10 +00:00
|
|
|
|
∘ Monoidal→Kleisli
|
2018-03-12 13:38:52 +00:00
|
|
|
|
∘ §2-3.§1.toMonad
|
2018-03-12 13:04:10 +00:00
|
|
|
|
) m ≡⟨⟩ -- fromMonad and toMonad are inverses
|
2018-03-12 13:43:43 +00:00
|
|
|
|
( §1-fromMonad
|
2018-03-12 13:04:10 +00:00
|
|
|
|
∘ Kleisli→Monoidal
|
|
|
|
|
∘ Monoidal→Kleisli
|
2018-03-12 13:38:52 +00:00
|
|
|
|
∘ §2-3.§1.toMonad
|
2018-03-12 13:04:10 +00:00
|
|
|
|
) m ≡⟨ cong (λ φ → φ m) t ⟩ -- Monoidal→Kleisli and Kleisli→Monoidal are inverses
|
2018-03-12 13:43:43 +00:00
|
|
|
|
( §1-fromMonad
|
2018-03-12 13:38:52 +00:00
|
|
|
|
∘ §2-3.§1.toMonad
|
2018-03-12 13:04:10 +00:00
|
|
|
|
) m ≡⟨⟩ -- fromMonad and toMonad are inverses
|
|
|
|
|
m ∎
|
|
|
|
|
where
|
|
|
|
|
t = {!!} -- cong (λ φ → voe-2-3-1-fromMonad ∘ φ ∘ voe-2-3.voe-2-3-1.toMonad) (recto-verso Monoidal≃Kleisli)
|
|
|
|
|
|
2018-03-12 13:38:52 +00:00
|
|
|
|
voe-isEquiv : isEquiv (§2-3.§1 omap pure) (§2-3.§2 omap pure) forth
|
2018-03-12 13:04:10 +00:00
|
|
|
|
voe-isEquiv = gradLemma forth back forthEq backEq
|
|
|
|
|
|
2018-03-12 13:38:52 +00:00
|
|
|
|
equiv-2-3 : §2-3.§1 omap pure ≃ §2-3.§2 omap pure
|
2018-03-12 13:04:10 +00:00
|
|
|
|
equiv-2-3 = forth , voe-isEquiv
|