cat/src/Cat/Category/Monad/Kleisli.agda

250 lines
8.5 KiB
Agda
Raw Normal View History

{---
The Kleisli formulation of monads
---}
{-# OPTIONS --cubical --allow-unsolved-metas #-}
open import Agda.Primitive
2018-03-21 13:56:43 +00:00
open import Cat.Prelude
open import Cat.Category
open import Cat.Category.Functor as F
open import Cat.Category.NaturalTransformation
open import Cat.Categories.Fun
-- "A monad in the Kleisli form" [voe]
module Cat.Category.Monad.Kleisli {a b : Level} ( : Category a b) where
private
= a b
module = Category
open using (Arrow ; 𝟙 ; Object ; _∘_ ; _>>>_)
-- | Data for a monad.
--
-- Note that (>>=) is not expressible in a general category because objects
-- are not generally types.
record RawMonad : Set where
field
omap : Object Object
pure : {X : Object} [ X , omap X ]
bind : {X Y : Object} [ X , omap Y ] [ omap X , omap Y ]
-- | functor map
--
-- This should perhaps be defined in a "Klesli-version" of functors as well?
fmap : {A B} [ A , B ] [ omap A , omap B ]
fmap f = bind (pure f)
-- | Composition of monads aka. the kleisli-arrow.
_>=>_ : {A B C : Object} [ A , omap B ] [ B , omap C ] [ A , omap C ]
f >=> g = f >>> (bind g)
-- | Flattening nested monads.
join : {A : Object} [ omap (omap A) , omap A ]
join = bind 𝟙
------------------
-- * Monad laws --
------------------
-- There may be better names than what I've chosen here.
IsIdentity = {X : Object}
bind pure 𝟙 {omap X}
IsNatural = {X Y : Object} (f : [ X , omap Y ])
pure >>> (bind f) f
IsDistributive = {X Y Z : Object} (g : [ Y , omap Z ]) (f : [ X , omap Y ])
(bind f) >>> (bind g) bind (f >=> g)
-- | Functor map fusion.
--
-- This is really a functor law. Should we have a kleisli-representation of
-- functors as well and make them a super-class?
Fusion = {X Y Z : Object} {g : [ Y , Z ]} {f : [ X , Y ]}
fmap (g f) fmap g fmap f
-- In the ("foreign") formulation of a monad `IsNatural`'s analogue here would be:
IsNaturalForeign : Set _
IsNaturalForeign = {X : Object} join {X} fmap join join join
IsInverse : Set _
IsInverse = {X : Object} join {X} pure 𝟙 × join {X} fmap pure 𝟙
record IsMonad (raw : RawMonad) : Set where
open RawMonad raw public
field
isIdentity : IsIdentity
isNatural : IsNatural
isDistributive : IsDistributive
-- | Map fusion is admissable.
fusion : Fusion
fusion {g = g} {f} = begin
fmap (g f) ≡⟨⟩
bind ((f >>> g) >>> pure) ≡⟨ cong bind .isAssociative
bind (f >>> (g >>> pure)) ≡⟨ cong (λ φ bind (f >>> φ)) (sym (isNatural _))
bind (f >>> (pure >>> (bind (g >>> pure)))) ≡⟨⟩
bind (f >>> (pure >>> fmap g)) ≡⟨⟩
bind ((fmap g pure) f) ≡⟨ cong bind (sym .isAssociative)
bind (fmap g (pure f)) ≡⟨ sym distrib
bind (pure g) bind (pure f) ≡⟨⟩
fmap g fmap f
where
distrib : fmap g fmap f bind (fmap g (pure f))
distrib = isDistributive (pure g) (pure f)
-- | This formulation gives rise to the following endo-functor.
private
rawR : RawFunctor
RawFunctor.omap rawR = omap
RawFunctor.fmap rawR = fmap
isFunctorR : IsFunctor rawR
IsFunctor.isIdentity isFunctorR = begin
bind (pure 𝟙) ≡⟨ cong bind (.rightIdentity)
bind pure ≡⟨ isIdentity
𝟙
IsFunctor.isDistributive isFunctorR {f = f} {g} = begin
bind (pure (g f)) ≡⟨⟩
fmap (g f) ≡⟨ fusion
fmap g fmap f ≡⟨⟩
bind (pure g) bind (pure f)
-- FIXME Naming!
R : EndoFunctor
Functor.raw R = rawR
Functor.isFunctor R = isFunctorR
private
open NaturalTransformation
R⁰ : EndoFunctor
R⁰ = F.identity
: EndoFunctor
= F[ R R ]
module R = Functor R
module R = Functor R⁰
module R² = Functor
pureT : Transformation R⁰ R
pureT A = pure
pureN : Natural R⁰ R pureT
pureN {A} {B} f = begin
pureT B R⁰.fmap f ≡⟨⟩
pure f ≡⟨ sym (isNatural _)
bind (pure f) pure ≡⟨⟩
fmap f pure ≡⟨⟩
R.fmap f pureT A
joinT : Transformation R
joinT C = join
joinN : Natural R joinT
joinN f = begin
join R².fmap f ≡⟨⟩
bind 𝟙 R².fmap f ≡⟨⟩
R².fmap f >>> bind 𝟙 ≡⟨⟩
fmap (fmap f) >>> bind 𝟙 ≡⟨⟩
fmap (bind (f >>> pure)) >>> bind 𝟙 ≡⟨⟩
bind (bind (f >>> pure) >>> pure) >>> bind 𝟙
≡⟨ isDistributive _ _
bind ((bind (f >>> pure) >>> pure) >=> 𝟙)
≡⟨⟩
bind ((bind (f >>> pure) >>> pure) >>> bind 𝟙)
≡⟨ cong bind .isAssociative
bind (bind (f >>> pure) >>> (pure >>> bind 𝟙))
≡⟨ cong (λ φ bind (bind (f >>> pure) >>> φ)) (isNatural _)
bind (bind (f >>> pure) >>> 𝟙)
≡⟨ cong bind .leftIdentity
bind (bind (f >>> pure))
≡⟨ cong bind (sym .rightIdentity)
bind (𝟙 >>> bind (f >>> pure)) ≡⟨⟩
bind (𝟙 >=> (f >>> pure))
≡⟨ sym (isDistributive _ _)
bind 𝟙 >>> bind (f >>> pure) ≡⟨⟩
bind 𝟙 >>> fmap f ≡⟨⟩
bind 𝟙 >>> R.fmap f ≡⟨⟩
R.fmap f bind 𝟙 ≡⟨⟩
R.fmap f join
pureNT : NaturalTransformation R⁰ R
proj₁ pureNT = pureT
proj₂ pureNT = pureN
joinNT : NaturalTransformation R
proj₁ joinNT = joinT
proj₂ joinNT = joinN
isNaturalForeign : IsNaturalForeign
isNaturalForeign = begin
fmap join >>> join ≡⟨⟩
bind (join >>> pure) >>> bind 𝟙
≡⟨ isDistributive _ _
bind ((join >>> pure) >>> bind 𝟙)
≡⟨ cong bind .isAssociative
bind (join >>> (pure >>> bind 𝟙))
≡⟨ cong (λ φ bind (join >>> φ)) (isNatural _)
bind (join >>> 𝟙)
≡⟨ cong bind .leftIdentity
bind join ≡⟨⟩
bind (bind 𝟙)
≡⟨ cong bind (sym .rightIdentity)
bind (𝟙 >>> bind 𝟙) ≡⟨⟩
bind (𝟙 >=> 𝟙) ≡⟨ sym (isDistributive _ _)
bind 𝟙 >>> bind 𝟙 ≡⟨⟩
join >>> join
isInverse : IsInverse
isInverse = inv-l , inv-r
where
inv-l = begin
pure >>> join ≡⟨⟩
pure >>> bind 𝟙 ≡⟨ isNatural _
𝟙
inv-r = begin
fmap pure >>> join ≡⟨⟩
bind (pure >>> pure) >>> bind 𝟙
≡⟨ isDistributive _ _
bind ((pure >>> pure) >=> 𝟙) ≡⟨⟩
bind ((pure >>> pure) >>> bind 𝟙)
≡⟨ cong bind .isAssociative
bind (pure >>> (pure >>> bind 𝟙))
≡⟨ cong (λ φ bind (pure >>> φ)) (isNatural _)
bind (pure >>> 𝟙)
≡⟨ cong bind .leftIdentity
bind pure ≡⟨ isIdentity
𝟙
record Monad : Set where
field
raw : RawMonad
isMonad : IsMonad raw
open IsMonad isMonad public
private
module _ (raw : RawMonad) where
open RawMonad raw
propIsIdentity : isProp IsIdentity
propIsIdentity x y i = .arrowsAreSets _ _ x y i
propIsNatural : isProp IsNatural
propIsNatural x y i = λ f
.arrowsAreSets _ _ (x f) (y f) i
propIsDistributive : isProp IsDistributive
propIsDistributive x y i = λ g f
.arrowsAreSets _ _ (x g f) (y g f) i
open IsMonad
propIsMonad : (raw : _) isProp (IsMonad raw)
IsMonad.isIdentity (propIsMonad raw x y i)
= propIsIdentity raw (isIdentity x) (isIdentity y) i
IsMonad.isNatural (propIsMonad raw x y i)
= propIsNatural raw (isNatural x) (isNatural y) i
IsMonad.isDistributive (propIsMonad raw x y i)
= propIsDistributive raw (isDistributive x) (isDistributive y) i
module _ {m n : Monad} (eq : Monad.raw m Monad.raw n) where
private
eqIsMonad : (λ i IsMonad (eq i)) [ Monad.isMonad m Monad.isMonad n ]
eqIsMonad = lemPropF propIsMonad eq
Monad≡ : m n
Monad.raw (Monad≡ i) = eq i
Monad.isMonad (Monad≡ i) = eqIsMonad i