cat/src/Cat/Prelude.agda

66 lines
1.8 KiB
Agda
Raw Normal View History

2018-03-21 13:39:56 +00:00
-- | Custom prelude for this module
module Cat.Prelude where
open import Agda.Primitive public
-- FIXME Use:
-- open import Agda.Builtin.Sigma public
-- Rather than
open import Data.Product public
renaming (∃! to ∃!≈)
-- TODO Import Data.Function under appropriate names.
open import Cubical public
-- FIXME rename `gradLemma` to `fromIsomorphism` - perhaps just use wrapper
-- module.
open import Cubical.GradLemma
using (gradLemma)
public
open import Cubical.NType
2018-03-21 14:01:31 +00:00
using (⟨-2⟩ ; ⟨-1⟩ ; ⟨0⟩ ; TLevel ; HasLevel)
2018-03-21 13:39:56 +00:00
public
open import Cubical.NType.Properties
using
( lemPropF ; lemSig ; lemSigP ; isSetIsProp
; propPi ; propHasLevel ; setPi ; propSet)
public
2018-03-22 13:27:16 +00:00
propIsContr : { : Level} {A : Set } isProp (isContr A)
propIsContr = propHasLevel ⟨-2⟩
2018-03-21 13:56:43 +00:00
open import Cubical.Sigma using (setSig ; sigPresSet) public
2018-03-21 14:01:31 +00:00
module _ ( : Level) where
-- FIXME Ask if we can push upstream.
-- A redefinition of `Cubical.Universe` with an explicit parameter
_-type : TLevel Set (lsuc )
n -type = Σ (Set ) (HasLevel n)
hSet : Set (lsuc )
hSet = ⟨0⟩ -type
Prop : Set (lsuc )
Prop = ⟨-1⟩ -type
2018-03-21 13:39:56 +00:00
-----------------
-- * Utilities --
-----------------
-- | Unique existensials.
∃! : {a b} {A : Set a}
(A Set b) Set (a b)
∃! = ∃!≈ _≡_
∃!-syntax : {a b} {A : Set a} (A Set b) Set (a b)
∃!-syntax =
syntax ∃!-syntax (λ x B) = ∃![ x ] B
2018-03-21 13:47:01 +00:00
module _ {a b : Level} {A : Set a} {B : A Set b} {a b : Σ A B}
(proj₁≡ : (λ _ A) [ proj₁ a proj₁ b ])
(proj₂≡ : (λ i B (proj₁≡ i)) [ proj₂ a proj₂ b ]) where
Σ≡ : a b
proj₁ (Σ≡ i) = proj₁≡ i
proj₂ (Σ≡ i) = proj₂≡ i