2018-02-16 11:03:02 +00:00
|
|
|
|
module Cat.Wishlist where
|
|
|
|
|
|
2018-02-19 10:25:16 +00:00
|
|
|
|
open import Level
|
2018-02-16 11:03:02 +00:00
|
|
|
|
open import Cubical.NType
|
|
|
|
|
open import Data.Nat using (_≤_ ; z≤n ; s≤s)
|
|
|
|
|
|
|
|
|
|
postulate ntypeCommulative : ∀ {ℓ n m} {A : Set ℓ} → n ≤ m → HasLevel ⟨ n ⟩₋₂ A → HasLevel ⟨ m ⟩₋₂ A
|
2018-02-19 10:25:16 +00:00
|
|
|
|
|
2018-02-19 14:46:19 +00:00
|
|
|
|
module _ {ℓ : Level} {A : Set ℓ} where
|
|
|
|
|
-- This is §7.1.10 in [HoTT]. Andrea says the proof is in `cubical` but I
|
|
|
|
|
-- can't find it.
|
|
|
|
|
postulate propHasLevel : ∀ n → isProp (HasLevel n A)
|
|
|
|
|
|
|
|
|
|
isSetIsProp : isProp (isSet A)
|
|
|
|
|
isSetIsProp = propHasLevel (S (S ⟨-2⟩))
|