44 lines
779 B
Agda
44 lines
779 B
Agda
|
{-# OPTIONS --cubical #-}
|
||
|
|
||
|
open import Cubical.PathPrelude hiding ( Id )
|
||
|
|
||
|
module _ {A : Set} {a : A} {P : A → Set} where
|
||
|
Q : A → Set
|
||
|
Q a = A
|
||
|
|
||
|
t : Σ[ a ∈ A ] P a → Q a
|
||
|
t (a , Pa) = a
|
||
|
u : Q a → Σ[ a ∈ A ] P a
|
||
|
u a = a , {!!}
|
||
|
|
||
|
tu-bij : (a : Q a) → (t ∘ u) a ≡ a
|
||
|
tu-bij a = refl
|
||
|
|
||
|
v : P a → Q a
|
||
|
v x = {!!}
|
||
|
w : Q a → P a
|
||
|
w x = {!!}
|
||
|
|
||
|
vw-bij : (a : P a) → (w ∘ v) a ≡ a
|
||
|
vw-bij a = refl
|
||
|
-- tubij a with (t ∘ u) a
|
||
|
-- ... | q = {!!}
|
||
|
|
||
|
data Id {A : Set} (a : A) : Set where
|
||
|
id : A → Id a
|
||
|
|
||
|
data Id' {A : Set} (a : A) : Set where
|
||
|
id' : A → Id' a
|
||
|
|
||
|
T U : Set
|
||
|
T = Id a
|
||
|
U = Id' a
|
||
|
|
||
|
f : T → U
|
||
|
f (id x) = id' x
|
||
|
g : U → T
|
||
|
g (id' x) = id x
|
||
|
|
||
|
fg-bij : (x : U) → (f ∘ g) x ≡ x
|
||
|
fg-bij (id' x) = {!!}
|