2018-01-24 15:38:28 +00:00
|
|
|
|
{-# OPTIONS --allow-unsolved-metas --cubical #-}
|
2018-01-15 15:13:23 +00:00
|
|
|
|
|
|
|
|
|
module Cat.Category.Properties where
|
|
|
|
|
|
2018-01-21 14:01:01 +00:00
|
|
|
|
open import Agda.Primitive
|
|
|
|
|
open import Data.Product
|
|
|
|
|
open import Cubical.PathPrelude
|
|
|
|
|
|
2018-01-15 15:13:23 +00:00
|
|
|
|
open import Cat.Category
|
|
|
|
|
open import Cat.Functor
|
|
|
|
|
open import Cat.Categories.Sets
|
|
|
|
|
|
2018-01-21 14:01:01 +00:00
|
|
|
|
module _ {ℓ ℓ' : Level} {ℂ : Category ℓ ℓ'} { A B : ℂ .Category.Object } {X : ℂ .Category.Object} (f : ℂ .Category.Arrow A B) where
|
|
|
|
|
open Category ℂ
|
|
|
|
|
open IsCategory (isCategory)
|
|
|
|
|
|
|
|
|
|
iso-is-epi : Isomorphism {ℂ = ℂ} f → Epimorphism {ℂ = ℂ} {X = X} f
|
|
|
|
|
iso-is-epi (f- , left-inv , right-inv) g₀ g₁ eq =
|
|
|
|
|
begin
|
|
|
|
|
g₀ ≡⟨ sym (proj₁ ident) ⟩
|
|
|
|
|
g₀ ⊕ 𝟙 ≡⟨ cong (_⊕_ g₀) (sym right-inv) ⟩
|
|
|
|
|
g₀ ⊕ (f ⊕ f-) ≡⟨ assoc ⟩
|
|
|
|
|
(g₀ ⊕ f) ⊕ f- ≡⟨ cong (λ φ → φ ⊕ f-) eq ⟩
|
|
|
|
|
(g₁ ⊕ f) ⊕ f- ≡⟨ sym assoc ⟩
|
|
|
|
|
g₁ ⊕ (f ⊕ f-) ≡⟨ cong (_⊕_ g₁) right-inv ⟩
|
|
|
|
|
g₁ ⊕ 𝟙 ≡⟨ proj₁ ident ⟩
|
|
|
|
|
g₁ ∎
|
|
|
|
|
|
|
|
|
|
iso-is-mono : Isomorphism {ℂ = ℂ} f → Monomorphism {ℂ = ℂ} {X = X} f
|
|
|
|
|
iso-is-mono (f- , (left-inv , right-inv)) g₀ g₁ eq =
|
|
|
|
|
begin
|
|
|
|
|
g₀ ≡⟨ sym (proj₂ ident) ⟩
|
|
|
|
|
𝟙 ⊕ g₀ ≡⟨ cong (λ φ → φ ⊕ g₀) (sym left-inv) ⟩
|
|
|
|
|
(f- ⊕ f) ⊕ g₀ ≡⟨ sym assoc ⟩
|
|
|
|
|
f- ⊕ (f ⊕ g₀) ≡⟨ cong (_⊕_ f-) eq ⟩
|
|
|
|
|
f- ⊕ (f ⊕ g₁) ≡⟨ assoc ⟩
|
|
|
|
|
(f- ⊕ f) ⊕ g₁ ≡⟨ cong (λ φ → φ ⊕ g₁) left-inv ⟩
|
|
|
|
|
𝟙 ⊕ g₁ ≡⟨ proj₂ ident ⟩
|
|
|
|
|
g₁ ∎
|
|
|
|
|
|
|
|
|
|
iso-is-epi-mono : Isomorphism {ℂ = ℂ} f → Epimorphism {ℂ = ℂ} {X = X} f × Monomorphism {ℂ = ℂ} {X = X} f
|
|
|
|
|
iso-is-epi-mono iso = iso-is-epi iso , iso-is-mono iso
|
|
|
|
|
|
|
|
|
|
{-
|
|
|
|
|
epi-mono-is-not-iso : ∀ {ℓ ℓ'} → ¬ ((ℂ : Category {ℓ} {ℓ'}) {A B X : Object ℂ} (f : Arrow ℂ A B ) → Epimorphism {ℂ = ℂ} {X = X} f → Monomorphism {ℂ = ℂ} {X = X} f → Isomorphism {ℂ = ℂ} f)
|
|
|
|
|
epi-mono-is-not-iso f =
|
|
|
|
|
let k = f {!!} {!!} {!!} {!!}
|
|
|
|
|
in {!!}
|
|
|
|
|
-}
|
|
|
|
|
|
2018-01-25 11:01:37 +00:00
|
|
|
|
module _ {ℓ : Level} {ℂ : Category ℓ ℓ} where
|
|
|
|
|
open import Cat.Category
|
|
|
|
|
open Category
|
|
|
|
|
open import Cat.Categories.Cat using (Cat)
|
|
|
|
|
module Cat = Cat.Categories.Cat
|
2018-01-24 15:38:28 +00:00
|
|
|
|
open Exponential
|
2018-01-25 11:01:37 +00:00
|
|
|
|
private
|
|
|
|
|
Catℓ = Cat ℓ ℓ
|
2018-01-21 14:01:01 +00:00
|
|
|
|
|
2018-01-25 11:01:37 +00:00
|
|
|
|
-- Exp : Set (lsuc (lsuc ℓ))
|
|
|
|
|
-- Exp = Exponential (Cat (lsuc ℓ) ℓ)
|
|
|
|
|
-- Sets (Opposite ℂ)
|
2018-01-21 20:29:15 +00:00
|
|
|
|
|
2018-01-25 11:01:37 +00:00
|
|
|
|
_⇑_ : (A B : Catℓ .Object) → Catℓ .Object
|
|
|
|
|
A ⇑ B = (exponent A B) .obj
|
|
|
|
|
where
|
2018-01-25 12:58:56 +00:00
|
|
|
|
open HasExponentials (Cat.hasExponentials ℓ)
|
2018-01-21 20:29:15 +00:00
|
|
|
|
|
2018-01-25 11:01:37 +00:00
|
|
|
|
private
|
|
|
|
|
-- I need `Sets` to be a `Category ℓ ℓ` but it simlpy isn't.
|
|
|
|
|
Setz : Category ℓ ℓ
|
|
|
|
|
Setz = {!Sets!}
|
|
|
|
|
:func*: : ℂ .Object → (Setz ⇑ Opposite ℂ) .Object
|
|
|
|
|
:func*: A = {!!}
|
2018-01-15 15:13:23 +00:00
|
|
|
|
|
2018-01-25 12:58:56 +00:00
|
|
|
|
-- prsh = presheaf {ℂ = ℂ}
|
2018-01-25 13:11:28 +00:00
|
|
|
|
-- k = prsh {!!}
|
2018-01-25 12:58:56 +00:00
|
|
|
|
-- :func*:' : ℂ .Object → Presheaf ℂ
|
|
|
|
|
-- :func*:' = prsh
|
|
|
|
|
-- module _ {A B : ℂ .Object} (f : ℂ .Arrow A B) where
|
|
|
|
|
-- open import Cat.Categories.Fun
|
|
|
|
|
-- :func→:' : NaturalTransformation (prsh A) (prsh B)
|
|
|
|
|
|
2018-01-25 11:01:37 +00:00
|
|
|
|
yoneda : Functor ℂ (Setz ⇑ (Opposite ℂ))
|
|
|
|
|
yoneda = record
|
|
|
|
|
{ func* = :func*:
|
2018-01-25 13:11:28 +00:00
|
|
|
|
; func→ = {!!}
|
2018-01-25 11:01:37 +00:00
|
|
|
|
; ident = {!!}
|
|
|
|
|
; distrib = {!!}
|
|
|
|
|
}
|