Add section on functors and natural transformations

Also do not use ugly overbar
This commit is contained in:
Frederik Hanghøj Iversen 2018-05-22 13:45:52 +02:00
parent 2fce963072
commit 01159930de
4 changed files with 176 additions and 67 deletions

View file

@ -1261,6 +1261,55 @@ That in any category:
\prod_{A\ B \tp \Object} \isProp\ (\var{Product}\ \bC\ A\ B)
\end{align}
%
\section{Functors and natural transformations}
For the sake of completeness I will mention the definition of functors
and natural transformations. Please refer to the implementation for
the full details.
%
\subsection{Functors}
Given two categories $\bC$ and $\bD$ a functor consists of the
following data:
%
\begin{align*}
\omapF & \tp .\Object𝔻.\Object \\
\fmap & \tp .\Arrow\ A\ B → 𝔻.\Arrow\ (\omapF\ A)\ (\omapF\ B)
\end{align*}
%
And the following laws:
\begin{align*}
\fmap\ .\identity &𝔻.identity \\
\fmap\ (g \clll f) &\fmap\ g \dlll \fmap\ f
\end{align*}
%
The implementation can be found here:
%
\begin{center}
\sourcelink{Cat.Category.Functor}
\end{center}
\subsection{Natural Transformation}
Given two functors between categories $\bC$ and $\bD$. Name them
$\FunF$ and $\FunG$. A natural transformation is a family of arrows:
%
\begin{align*}
\prod_{C \tp .\Object} \bD.\Arrow\ (\omapF\ C)\ (\omapG\ C)
\end{align*}
%
This family of arrows can be seen as the data. If $\theta$ is a
natural transformation $\theta\ C$ will be called the component (of
$\theta$) at $C$. The laws of this family of morphism is the
naturality condition:
%
\begin{align*}
\prod_{f \tp .\Arrow\ A\ B}
\ B) \dlll (\FunF.\fmap\ f) ≡ (\FunG.\fmap\ f) \dlll\ A)
\end{align*}
%
The implementation can be found here:
%
\begin{center}
\sourcelink{Cat.Category.NaturalTransformation}
\end{center}
\section{Monads}
\label{sec:monads}
In this section I present two formulations of monads. The two representations
@ -1269,8 +1318,14 @@ simply monoidal monads and Kleisli monads for short. We then show that the two
formulations are equivalent, which due to univalence gives us a path between the
two types.
Let a category $\bC$ be given. In the remainder of this sections all objects and
arrows will implicitly refer to objects and arrows in this category.
Let a category $\bC$ be given. In the remainder of this sections all
objects and arrows will implicitly refer to objects and arrows in this
category. I will also use the notation $\EndoR$ to refer to an
endofunctor on this category. Its map on objects will be denoted
$\omapR$ and its map on arrows will be denoted $\fmap$. Likewise I
will use the notation $\pureNT$ to refer to a natural transformation
and its component at a given (implicit) object will be denoted
$\pure$.
%
\subsection{Monoidal formulation}
The monoidal formulation of monads consists of the following data:
@ -1278,7 +1333,7 @@ The monoidal formulation of monads consists of the following data:
\begin{align}
\label{eq:monad-monoidal-data}
\begin{split}
\EndoR & \tp \Endo \\
\EndoR & \tp \Functor\ \ \bC \\
\pureNT & \tp \NT{\EndoR^0}{\EndoR} \\
\joinNT & \tp \NT{\EndoR^2}{\EndoR}
\end{split}
@ -1321,8 +1376,15 @@ The Kleisli-formulation consists of the following data:
\end{split}
\end{align}
%
The objects $X$ and $Y$ are implicitly universally quantified.
The objects $X$ and $Y$ are implicitly universally quantified. With this data we can construct the \nomenindex{Kleisli arrow}:
%
\begin{align*}
\fish & \tp \Arrow\ A\ (\omapR\ B)
\to \Arrow\ B\ (\omapR\ C)
\to \Arrow\ A\ (\omapR\ C) \\
f \fish g & \defeq f \rrr (\bind\ g)
\end{align*}
%
It is interesting to note here that this formulation does not talk about natural
transformations or other such constructs from category theory. All we have here
is a regular maps on objects and a pair of arrows.
@ -1339,11 +1401,10 @@ This data must satisfy:
\end{align}
\newcommand\kleislilaws{\ref{eq:monad-kleisli-laws-0}, \ref{eq:monad-kleisli-laws-1} and \ref{eq:monad-kleisli-laws-2}}%
%
Here likewise the arrows $f \tp \Arrow\ X\ (\EndoR\ Y)$ and $g \tp
\Arrow\ Y\ (\EndoR\ Z)$ are universally quantified (as well as the objects they
range over). $\fish$ is the Kleisli-arrow which is defined as $f \fish g \defeq
f \rrr (\bind\ g)$ . (\TODO{Better way to typeset $\fish$?})
Here likewise the arrows $f \tp \Arrow\ X\ (\omapR\ Y)$ and $g \tp
\Arrow\ Y\ (\omapR\ Z)$ are universally quantified as well as the
objects they range over.
%
\subsection{Equivalence of formulations}
%
The notation I have chosen here in the report
@ -1376,27 +1437,27 @@ show that $(\omapR, \pure, \bind)$ is indeed a monad in the Kleisli
form. In the second part we will show the other direction.
\subsubsection{Monoidal to Kleisli}
Let $(\EndoR, \pure, \join)$ be given as in \ref{eq:monad-monoidal-data}
Let $(\EndoR, \pureNT, \joinNT)$ be given as in \ref{eq:monad-monoidal-data}
satisfying the laws \monoidallaws. For the data of the Kleisli
formulation we pick:
%
\begin{align}
\begin{split}
\EndoR & \defeq \EndoRX \\
\pure & \defeq \pureX \\
\bind\ f & \tp \joinX \lll \fmapX\ f
\omapR & \defeq \omapR \\
\pure & \defeq \pure \\
\bind\ f & \defeq \join \lll \fmap\ f
\end{split}
\end{align}
%
$\EndoRX$ is the object map of the endo-functor $\EndoR$, $\pureX$ and
$\joinX$ are the arrows from the natural transformations $\pure$ and
$\join$ respectively. The term $\fmapX$ is the arrow map of the
endo-functor $\EndoR$. It now just remains to verify the laws
Again $\omapR$ is the object map of the endo-functor $\EndoR$, $\pure$
and $\join$ are the arrows from the natural transformations $\pureNT$
and $\joinNT$ respectively and $\fmap$ is the map on arrows of the
endofunctor $\EndoR$. It now just remains to verify the laws
\kleislilaws. For \ref{eq:monad-kleisli-laws-0}:
%
\begin{align*}
\bind\ \pure &
\join \lll (\fmap\ \pure) && \text{By definition} \\
\bind\ \pure & =
\join \lll (\fmap\ \pure) \\
&\identity && \text{By \ref{eq:monad-monoidal-laws-2}}
\end{align*}
%
@ -1404,57 +1465,89 @@ For \ref{eq:monad-kleisli-laws-1}:
%
\begin{align*}
\pure \fish f
& \equiv %%%
\pure \ggg \bind\ f && \text{By definition} \\ &
\bind\ f \lll \pure && \text{By definition} \\ &
\joinX \lll \fmapX\ f \lll \pureX && \text{By definition} \\ &
\joinX \lll \pureX \lll f && \text{$\pure$ is a natural transformation} \\ &
& = %%%
\pure \ggg \bind\ f \\ & =
\bind\ f \lll \pure \\ & =
\join \lll \fmap\ f \lll \pure \\ &
\join \lll \pure \lll f && \text{$\pure$ is a natural transformation} \\ &
\identity \lll f && \text{By \ref{eq:monad-monoidal-laws-1}} \\ &
f && \text{Left identity}
\end{align*}
%
For \ref{eq:monad-kleisli-laws-2}:
\begin{align*}
\bind\ g \rrr \bind\ f &
\bind\ g \rrr \bind\ f & =
\bind\ f \lll \bind\ g
\\ &
\\ & =
%% %%%%
\joinX \lll \fmapX\ g \lll \joinX \lll \fmapX\ f
&& \text{\dots} \\ &
\joinX \lll \joinX \lll \fmapX^2\ g \lll \fmapX\ f
\join \lll \fmap\ g \lll \join \lll \fmap\ f
\\ &
\join \lll \join \lll (\fmap \comp \fmap)\ f \lll \fmap\ g
&& \text{$\join$ is a natural transformation} \\ &
\joinX\ \lll \fmapX\ \joinX \lll \fmapX^2\ g \lll \fmapX\ f
\join \lll \fmap\ \join \lll (\fmap \comp \fmap)\ f \lll \fmap\ g
&& \text{By \ref{eq:monad-monoidal-laws-0}} \\ &
\joinX\ \lll \fmapX\ \joinX\ \lll \fmapX\ (\fmapX\ g) \lll \fmapX\ f
\join \lll \fmap\ \join \lll \fmap\ (\fmap\ f) \lll \fmap\ g
&& \text{} \\ &
\joinX \lll \fmapX\ (\joinX \lll \fmapX\ g \lll f)
&& \text{Distributive law for functors} \\ & \equiv
\join \lll \fmap\ (\join \lll \fmap\ f \lll g)
&& \text{Distributive law for functors} \\ & =
\join \lll \fmap\ (\join \lll \fmap\ f \lll g) \\ & =
%%%%
\bind\ (\bind\ f \lll g) \\ & =
\bind\ (g \rrr \bind\ f) \\ & =
\bind\ (g \fish f)
\end{align*}
%
The construction can be found in the module:
\begin{center}
\sourcelink{Cat.Category.Monad.Monoidal}
\end{center}
%
\subsubsection{Kleisli to Monoidal}
For the other direction we are given $(\EndoR, \pure, \bind)$ as in
For the other direction we are given $(\omapR, \pure, \bind)$ as in
\ref{eq:monad-kleisli-data} satisfying the laws \kleislilaws. For the data of
the monoidal formulation we pick:
%
\begin{align}
\begin{split}
\EndoR & \defeq \EndoRX \\
\pure & \defeq \pureX \\
\EndoR & \defeq (\omapR, \bind\ (\pure \lll f)) \\
\pure & \defeq \pure \\
\join & \defeq \bind\ \identity
\end{split}
\end{align}
%
Where $\EndoRX \defeq (\bind\ (\pure \lll f), \EndoR)$ and $\pureX \defeq
\bind\ \identity$. We must now show the laws \monoidallaws, but we must also
verify that our choice of $\EndoRX$ actually is a functor. I will ommit this
here. In stead we shall see how these two mappings are indeed inverses.
We must now not only show the monad laws given for the monoidal
formulation (\monoidallaws), we must also verify that $\EndoR$ is a
functor and that $\pure$ and $\join$ are natural transformations. I
will ommit this here. In stead we shall see how these two mappings are
indeed inverses. The full construction can be found in the module:
\begin{center}
\mbox{\sourcelink{Cat.Category.Monad.Kleisli}}
\end{center}
%
\subsubsection{Equivalence}
To prove that the two formulations are equivalent we must demonstrate that the
two mappings sketched above are indeed inverses of each other. If we name the
first mapping $\toKleisli$ and it's proposed inverse $\toMonoidal$
then we must show:
To prove that the two formulations are equivalent we must demonstrate
that the two mappings sketched above are indeed inverses of each
other. To recap, these maps are:
%
\begin{align*}
\toKleisli & \tp \var{Kleisli} \to \var{Monoidal} \\
\toKleisli & \defeq \lambda\ (\omapR, \pure, \bind)
\to (\EndoR, \pure, \bind\ \identity)
\end{align*}
%
Where $\EndoR \defeq (\omapR, \bind\ (\pure \lll f))$. The proof that
this is indeed a functor is left implicit as well as the monad laws.
Likewise the proof that $\pure$ and $\bind\ \identity$ are natural
transformations are left implicit. The inverse map will be:
%
\begin{align*}
\toMonoidal & \tp \var{Monoidal} \to \var{Kleisli} \\
\toMonoidal & \defeq \lambda\ (\EndoR, \pureNT, \joinNT)
\to (\omapR, \pure, \bind)
\end{align*}
%
Where $\bind\ f \defeq \join \lll \fmap\ f$. Again the monad laws are
left implicit. Now we must show:
%
\begin{align}
\label{eq:monad-forwards}
@ -1463,30 +1556,37 @@ then we must show:
\toMonoidal \comp \toKleisli &\identity
\end{align}
%
For \ref{eq:monad-forwards} let $(\EndoR, \pure, \join)$ be a monad in the
monoidal form. In my formulation the proof that being-a-monad is a proposition
can be found. With this result in place we get an equality principle for
kleisli-monads that say that to equate two such monads it suffices to equate
their data-part. So it suffices to equate the data-parts of the
\ref{eq:monad-forwards}. Such a proof is a triple equation the three projections
of \ref{eq:monad-kleisli-data}. The first two hold definitionally -- essentially
one just wraps and unwraps the morphism in a functor. For the last equation a
little more work is required:
For \ref{eq:monad-forwards} let $(\omapR, \pure, \bind)$ be a monad in
the Kleisli form. Since being-a-monad is a proposition\footnote{The
proof can be found in the implementation.} we get an
equality-principle for kleisli-monads that say that to equate two such
monads it suffices to equate their data-part. So it suffices to equate
the data-parts of the \ref{eq:monad-forwards}. Such a proof is a
triple equating the three projections of \ref{eq:monad-kleisli-data}.
The first two hold definitionally -- essentially one just wraps and
unwraps the morphism in a functor. For the last equation a little more
work is required:
%
\begin{align*}
\join \lll \fmap\ f &
\fmap\ f \rrr \join \\ &
\join \lll \fmap\ f & =
\fmap\ f \rrr \join \\ & =
\bind\ (f \rrr \pure) \rrr \bind\ \identity
&& \text{By definition of $\fmap$ and $\join$} \\ &
\bind\ (f \rrr \pure \fish \identity)
&& \text{By \ref{eq:monad-kleisli-laws-2}} \\ &
\bind\ (f \rrr \identity)
&& \text{By \ref{eq:monad-kleisli-laws-1}} \\ &
&& \text{By \ref{eq:monad-kleisli-laws-1}} \\ & =
\bind\ f
\end{align*}
%
For the other direction we can likewise verify that the maps $\EndoR$, $\bind$,
$\join$, and $\fmap$ are equal. The equality principle for functors gives us
that this is enough to show that the the functor $\EndoR$ we construct is
identical. Similarly for the natural transformations we have that the naturality
condition is a proposition so the paths between the maps are sufficient.
For the other direction (\ref{eq:monad-backwards}) we are given a
monad in the monoidal form; $(\EndoR, \pureNT, \joinNT)$. The various
equality-principles again give us that it is sufficient to equate the
data-part of the above. That is, we only need to verify that the
following pieces of data: $\omapR$, $\fmap$, $\pure$ and $\join$ get
mapped correctly. To see the full details check the implementation in
the module:
%
\begin{center}
\sourcelink{Cat.Category.Monad}
\end{center}

View file

@ -9,8 +9,9 @@
%% Alternatively:
%% \newcommand{\defeq}{}
\newcommand{\bN}{\mathbb{N}}
\newcommand{\bC}{\mathbb{C}}
\newcommand{\bX}{\mathbb{X}}
\newcommand{\bC}{}
\newcommand{\bD}{𝔻}
\newcommand{\bX}{𝕏}
% \newcommand{\to}{\rightarrow}
%% \newcommand{\mto}{\mapsto}
\newcommand{\mto}{\rightarrow}
@ -99,6 +100,10 @@
\newcommand\Endo[1]{\varindex{Endo}\ #1}
\newcommand\EndoR{\functor{\mathcal{R}}}
\newcommand\omapR{\mathcal{R}}
\newcommand\omapF{\mathcal{F}}
\newcommand\omapG{\mathcal{G}}
\newcommand\FunF{\functor{\omapF}}
\newcommand\FunG{\functor{\omapG}}
\newcommand\funExt{\varindex{funExt}}
\newcommand{\suc}[1]{\varindex{suc}\ #1}
\newcommand{\trans}{\varindex{trans}}
@ -117,3 +122,5 @@
}
\newcommand{\gitlink}{\hrefsymb{\docbasepath}{\texttt{\docbasepath}}}
\newcommand{\doclink}{\hrefsymb{\sourcebasepath}{\texttt{\sourcebasepath}}}
\newcommand{\clll}{\mathrel{\bC.\mathord{\lll}}}
\newcommand{\dlll}{\mathrel{\bD.\mathord{\lll}}}

View file

@ -140,3 +140,4 @@
-- (1, 1) -- (1, 0.6);
}
}
\usepackage{ dsfont }

View file

@ -63,7 +63,8 @@ module _ {a b : Level} ( : Category a b) where
f
Kleisli.IsMonad.isDistributive toKleisliIsMonad f g = begin
bind g >>> bind f ≡⟨⟩
(join <<< fmap g) >>> (join <<< fmap f) ≡⟨ isDistributive f g
(join <<< fmap f) <<< (join <<< fmap g) ≡⟨ isDistributive f g
join <<< fmap (join <<< fmap f <<< g) ≡⟨⟩
bind (g >=> f)
-- Kleisli.IsMonad.isDistributive toKleisliIsMonad = isDistributive