Simplifications and renaming

This commit is contained in:
Frederik Hanghøj Iversen 2018-04-09 18:02:39 +02:00
parent 735b25de23
commit 04144db606
1 changed files with 31 additions and 49 deletions

View File

@ -121,9 +121,6 @@ record RawCategory (a b : Level) : Set (lsuc (a ⊔ b)) where
Univalent : Set (a b)
Univalent = {A B : Object} isEquiv (A B) (A B) (idToIso A B)
import Cat.Equivalence as E
open E public using () renaming (Isomorphism to TypeIsomorphism)
univalenceFromIsomorphism : {A B : Object}
TypeIsomorphism (idToIso A B) isEquiv (A B) (A B) (idToIso A B)
univalenceFromIsomorphism = fromIso _ _
@ -305,6 +302,9 @@ module _ {a b : Level} ( : RawCategory a b) where
iso-to-id : (A B) (A B)
iso-to-id = fst (toIso _ _ univalent)
asTypeIso : TypeIsomorphism (idToIso A B)
asTypeIso = toIso _ _ univalent
-- | All projections are propositions.
module Propositionality where
-- | Terminal objects are propositional - a.k.a uniqueness of terminal
@ -333,10 +333,8 @@ module _ {a b : Level} ( : RawCategory a b) where
right = Yprop _ _
iso : X Y
iso = X→Y , Y→X , left , right
fromIso' : X Y X Y
fromIso' = fst (toIso (X Y) (X Y) univalent)
p0 : X Y
p0 = fromIso' iso
p0 = iso-to-id iso
p1 : (λ i IsTerminal (p0 i)) [ Xit Yit ]
p1 = lemPropF propIsTerminal p0
res : Xt Yt
@ -365,14 +363,8 @@ module _ {a b : Level} ( : RawCategory a b) where
right = Xprop _ _
iso : X Y
iso = Y→X , X→Y , right , left
fromIso' : X Y X Y
fromIso' = fst (toIso (X Y) (X Y) univalent)
p0 : X Y
p0 = fromIso' iso
p1 : (λ i IsInitial (p0 i)) [ Xii Yii ]
p1 = lemPropF propIsInitial p0
res : Xi Yi
res i = p0 i , p1 i
res = lemSig propIsInitial _ _ (iso-to-id iso)
module _ {a b : Level} ( : RawCategory a b) where
open RawCategory
@ -495,72 +487,62 @@ module Opposite {a b : Level} where
module _ {A B : .Object} where
k : Equivalence.Isomorphism (.idToIso A B)
k = toIso _ _ .univalent
open Σ k renaming (fst to f ; snd to inv)
open AreInverses inv
open Σ k renaming (fst to η ; snd to inv-η)
open AreInverses inv
_⊙_ = Function._∘_
infixr 9 _⊙_
-- f : A .≅ B → A ≡ B
flipDem : A B A .≅ B
flipDem (f , g , inv) = g , f , inv
genericly : {a b c : Level} {a : Set a} {b : Set b} {c : Set c}
a × b × c b × a × c
genericly (a , b , c) = (b , a , c)
flopDem : A .≅ B A B
flopDem (f , g , inv) = g , f , inv
shuffle : A B A .≅ B
shuffle (f , g , inv) = g , f , inv
shuffle~ : A .≅ B A B
shuffle~ (f , g , inv) = g , f , inv
-- Shouldn't be necessary to use `arrowsAreSets` here, but we have it,
-- so why not?
lem : (p : A B) idToIso A B p flopDem (.idToIso A B p)
lem p i = l≡r i
lem : (p : A B) idToIso A B p shuffle~ (.idToIso A B p)
lem p = Σ≡ refl (Σ≡ refl (Σ≡ (.arrowsAreSets _ _ l-l r-l) (.arrowsAreSets _ _ l-r r-r)))
where
l = idToIso A B p
r = flopDem (.idToIso A B p)
r = shuffle~ (.idToIso A B p)
open Σ l renaming (fst to l-obv ; snd to l-areInv)
open Σ l-areInv renaming (fst to l-invs ; snd to l-iso)
open Σ l-iso renaming (fst to l-l ; snd to l-r)
open Σ r renaming (fst to r-obv ; snd to r-areInv)
open Σ r-areInv renaming (fst to r-invs ; snd to r-iso)
open Σ r-iso renaming (fst to r-l ; snd to r-r)
l-obv≡r-obv : l-obv r-obv
l-obv≡r-obv = refl
l-invs≡r-invs : l-invs r-invs
l-invs≡r-invs = refl
l-l≡r-l : l-l r-l
l-l≡r-l = .arrowsAreSets _ _ l-l r-l
l-r≡r-r : l-r r-r
l-r≡r-r = .arrowsAreSets _ _ l-r r-r
l≡r : l r
l≡r i = l-obv≡r-obv i , l-invs≡r-invs i , l-l≡r-l i , l-r≡r-r i
ff : A B A B
ff = f flipDem
ζ : A B A B
ζ = η shuffle
-- inv : AreInverses (.idToIso A B) f
invv : AreInverses (idToIso A B) ff
inv-ζ : AreInverses (idToIso A B) ζ
-- recto-verso : .idToIso A B ∘ f ≡ idFun (A .≅ B)
invv = record
inv-ζ = record
{ verso-recto = funExt (λ x begin
(ff idToIso A B) x ≡⟨⟩
(f flipDem idToIso A B) x ≡⟨ cong (λ φ φ x) (cong (λ φ f flipDem φ) (funExt lem))
(f flipDem flopDem .idToIso A B) x ≡⟨⟩
(f .idToIso A B) x ≡⟨ (λ i verso-recto i x)
(ζ idToIso A B) x ≡⟨⟩
(η shuffle idToIso A B) x ≡⟨ cong (λ φ φ x) (cong (λ φ η shuffle φ) (funExt lem))
(η shuffle shuffle~ .idToIso A B) x ≡⟨⟩
(η .idToIso A B) x ≡⟨ (λ i verso-recto i x)
x )
; recto-verso = funExt (λ x begin
(idToIso A B f flipDem) x ≡⟨ cong (λ φ φ x) (cong (λ φ φ f flipDem) (funExt lem))
(flopDem .idToIso A B f flipDem) x ≡⟨ cong (λ φ φ x) (cong (λ φ flopDem φ flipDem) recto-verso)
(flopDem flipDem) x ≡⟨⟩
(idToIso A B η shuffle) x ≡⟨ cong (λ φ φ x) (cong (λ φ φ η shuffle) (funExt lem))
(shuffle~ .idToIso A B η shuffle) x ≡⟨ cong (λ φ φ x) (cong (λ φ shuffle~ φ shuffle) recto-verso)
(shuffle~ shuffle) x ≡⟨⟩
x )
}
h : Equivalence.Isomorphism (idToIso A B)
h = ff , invv
univalent : isEquiv (A B) (A B)
(Univalence.idToIso (swap .isIdentity) A B)
univalent = fromIso _ _ h
h = ζ , inv-ζ
isCategory : IsCategory opRaw
IsCategory.isPreCategory isCategory = isPreCategory
IsCategory.univalent isCategory = univalent
IsCategory.univalent isCategory = univalenceFromIsomorphism h
opposite : Category a b
Category.raw opposite = opRaw