Rename arrowIsSet
This commit is contained in:
parent
e8ac6786ff
commit
0688f5c372
|
@ -46,7 +46,7 @@ module _ (ℓa ℓb : Level) where
|
|||
isCategory = record
|
||||
{ assoc = λ {A} {B} {C} {D} {f} {g} {h} → assoc {D = D} {f} {g} {h}
|
||||
; ident = λ {A} {B} {f} → ident {A} {B} {f = f}
|
||||
; arrow-is-set = {!!}
|
||||
; arrowIsSet = {!!}
|
||||
; univalent = {!!}
|
||||
}
|
||||
|
||||
|
|
|
@ -110,7 +110,7 @@ module _ {ℓc ℓc' ℓd ℓd' : Level} {ℂ : Category ℓc ℓc'} {𝔻 : Cat
|
|||
:isCategory: = record
|
||||
{ assoc = λ {A B C D} → :assoc: {A} {B} {C} {D}
|
||||
; ident = λ {A B} → :ident: {A} {B}
|
||||
; arrow-is-set = {!!}
|
||||
; arrowIsSet = {!!}
|
||||
; univalent = {!!}
|
||||
}
|
||||
|
||||
|
|
|
@ -166,6 +166,6 @@ RawIsCategoryRel : IsCategory RawRel
|
|||
RawIsCategoryRel = record
|
||||
{ assoc = funExt is-assoc
|
||||
; ident = funExt ident-l , funExt ident-r
|
||||
; arrow-is-set = {!!}
|
||||
; arrowIsSet = {!!}
|
||||
; univalent = {!!}
|
||||
}
|
||||
|
|
|
@ -23,7 +23,7 @@ module _ {ℓ : Level} where
|
|||
assoc SetsIsCategory = refl
|
||||
proj₁ (ident SetsIsCategory) = funExt λ _ → refl
|
||||
proj₂ (ident SetsIsCategory) = funExt λ _ → refl
|
||||
arrow-is-set SetsIsCategory = {!!}
|
||||
arrowIsSet SetsIsCategory = {!!}
|
||||
univalent SetsIsCategory = {!!}
|
||||
|
||||
Sets : Category (lsuc ℓ) ℓ
|
||||
|
|
|
@ -11,7 +11,7 @@ open import Data.Product renaming
|
|||
)
|
||||
open import Data.Empty
|
||||
import Function
|
||||
open import Cubical
|
||||
open import Cubical hiding (isSet)
|
||||
open import Cubical.GradLemma using ( propIsEquiv )
|
||||
|
||||
∃! : ∀ {a b} {A : Set a}
|
||||
|
@ -23,6 +23,9 @@ open import Cubical.GradLemma using ( propIsEquiv )
|
|||
|
||||
syntax ∃!-syntax (λ x → B) = ∃![ x ] B
|
||||
|
||||
IsSet : {ℓ : Level} (A : Set ℓ) → Set ℓ
|
||||
IsSet A = {x y : A} → (p q : x ≡ y) → p ≡ q
|
||||
|
||||
record RawCategory (ℓ ℓ' : Level) : Set (lsuc (ℓ' ⊔ ℓ)) where
|
||||
-- adding no-eta-equality can speed up type-checking.
|
||||
-- ONLY IF you define your categories with copatterns though.
|
||||
|
@ -59,7 +62,7 @@ record IsCategory {ℓa ℓb : Level} (ℂ : RawCategory ℓa ℓb) : Set (lsuc
|
|||
→ h ∘ (g ∘ f) ≡ (h ∘ g) ∘ f
|
||||
ident : {A B : Object} {f : Arrow A B}
|
||||
→ f ∘ 𝟙 ≡ f × 𝟙 ∘ f ≡ f
|
||||
arrow-is-set : ∀ {A B : Object} → isSet (Arrow A B)
|
||||
arrowIsSet : ∀ {A B : Object} → IsSet (Arrow A B)
|
||||
|
||||
Isomorphism : ∀ {A B} → (f : Arrow A B) → Set ℓb
|
||||
Isomorphism {A} {B} f = Σ[ g ∈ Arrow B A ] g ∘ f ≡ 𝟙 × f ∘ g ≡ 𝟙
|
||||
|
@ -73,7 +76,6 @@ record IsCategory {ℓa ℓb : Level} (ℂ : RawCategory ℓa ℓb) : Set (lsuc
|
|||
id-to-iso : (A B : Object) → A ≡ B → A ≅ B
|
||||
id-to-iso A B eq = transp (\ i → A ≅ eq i) (idIso A)
|
||||
|
||||
|
||||
-- TODO: might want to implement isEquiv differently, there are 3
|
||||
-- equivalent formulations in the book.
|
||||
Univalent : Set (ℓa ⊔ ℓb)
|
||||
|
@ -93,16 +95,15 @@ module _ {ℓa} {ℓb} {ℂ : RawCategory ℓa ℓb} where
|
|||
-- This lemma will be useful to prove the equality of two categories.
|
||||
IsCategory-is-prop : isProp (IsCategory ℂ)
|
||||
IsCategory-is-prop x y i = record
|
||||
{ assoc = x.arrow-is-set _ _ x.assoc y.assoc i
|
||||
{ assoc = x.arrowIsSet x.assoc y.assoc i
|
||||
; ident =
|
||||
( x.arrow-is-set _ _ (fst x.ident) (fst y.ident) i
|
||||
, x.arrow-is-set _ _ (snd x.ident) (snd y.ident) i
|
||||
( x.arrowIsSet (fst x.ident) (fst y.ident) i
|
||||
, x.arrowIsSet (snd x.ident) (snd y.ident) i
|
||||
)
|
||||
-- ; arrow-is-set = {!λ x₁ y₁ p q → x.arrow-is-set _ _ p q!}
|
||||
; arrow-is-set = λ _ _ p q →
|
||||
; arrowIsSet = λ p q →
|
||||
let
|
||||
golden : x.arrow-is-set _ _ p q ≡ y.arrow-is-set _ _ p q
|
||||
golden = λ j k l → {!!}
|
||||
golden : x.arrowIsSet p q ≡ y.arrowIsSet p q
|
||||
golden = {!!}
|
||||
in
|
||||
golden i
|
||||
; univalent = λ y₁ → {!!}
|
||||
|
@ -150,7 +151,7 @@ module _ {ℓa ℓb : Level} (ℂ : Category ℓa ℓb) where
|
|||
OpIsCategory : IsCategory OpRaw
|
||||
IsCategory.assoc OpIsCategory = sym assoc
|
||||
IsCategory.ident OpIsCategory = swap ident
|
||||
IsCategory.arrow-is-set OpIsCategory = {!!}
|
||||
IsCategory.arrowIsSet OpIsCategory = arrowIsSet
|
||||
IsCategory.univalent OpIsCategory = {!!}
|
||||
|
||||
Opposite : Category ℓa ℓb
|
||||
|
@ -176,7 +177,7 @@ module _ {ℓa ℓb : Level} {ℂ : Category ℓa ℓb} where
|
|||
rawIsCat : (i : I) → IsCategory (rawOp i)
|
||||
assoc (rawIsCat i) = IsCat.assoc
|
||||
ident (rawIsCat i) = IsCat.ident
|
||||
arrow-is-set (rawIsCat i) = IsCat.arrow-is-set
|
||||
arrowIsSet (rawIsCat i) = IsCat.arrowIsSet
|
||||
univalent (rawIsCat i) = IsCat.univalent
|
||||
|
||||
Opposite-is-involution : Opposite (Opposite ℂ) ≡ ℂ
|
||||
|
|
|
@ -37,6 +37,6 @@ module _ {ℓ ℓ' : Level} (ℂ : Category ℓ ℓ') where
|
|||
RawIsCategoryFree = record
|
||||
{ assoc = p-assoc
|
||||
; ident = ident-r , ident-l
|
||||
; arrow-is-set = {!!}
|
||||
; arrowIsSet = {!!}
|
||||
; univalent = {!!}
|
||||
}
|
||||
|
|
Loading…
Reference in a new issue