diff --git a/src/Cat/Categories/Sets.agda b/src/Cat/Categories/Sets.agda index f109b0c..98da7b1 100644 --- a/src/Cat/Categories/Sets.agda +++ b/src/Cat/Categories/Sets.agda @@ -126,24 +126,16 @@ module _ (ℓ : Level) where → (p ≡ q) ≃ (proj₁ p ≡ proj₁ q) lem2 pA p q = fromIsomorphism iso where - f : p ≡ q → proj₁ p ≡ proj₁ q + f : ∀ {p q} → p ≡ q → proj₁ p ≡ proj₁ q f e i = proj₁ (e i) - g : proj₁ p ≡ proj₁ q → p ≡ q - g = lemSig pA p q + g : ∀ {p q} → proj₁ p ≡ proj₁ q → p ≡ q + g {p} {q} = lemSig pA p q ve-re : (e : p ≡ q) → (g ∘ f) e ≡ e - -- QUESTION Why does `h` not satisfy the constraint here? - ve-re e i j = qq0 j , {!h!} - where - -- qq : ? [ proj₂ ((g ∘ f) e) ≡ proj₂ e ] - qq0 : proj₁ p ≡ proj₁ q - qq0 i = proj₁ (e i) - qq : (λ i → P (qq0 i)) [ proj₂ p ≡ proj₂ q ] - qq = lemPropF pA qq0 - h : P (qq0 j) - h = qq j - re-ve : (e : proj₁ p ≡ proj₁ q) → (f ∘ g) e ≡ e + ve-re = pathJ (\ q (e : p ≡ q) → (g ∘ f) e ≡ e) + (\ i j → p .proj₁ , propSet (pA (p .proj₁)) (p .proj₂) (p .proj₂) (λ i → (g {p} {p} ∘ f) (λ i₁ → p) i .proj₂) (λ i → p .proj₂) i j ) q + re-ve : (e : proj₁ p ≡ proj₁ q) → (f {p} {q} ∘ g {p} {q}) e ≡ e re-ve e = refl - inv : AreInverses f g + inv : AreInverses (f {p} {q}) (g {p} {q}) inv = record { verso-recto = funExt ve-re ; recto-verso = funExt re-ve