diff --git a/src/Cat/Category.agda b/src/Cat/Category.agda index 7d84df8..ba1ec7f 100644 --- a/src/Cat/Category.agda +++ b/src/Cat/Category.agda @@ -44,7 +44,7 @@ record Category {ℓ ℓ'} : Set (lsuc (ℓ' ⊔ ℓ)) where open Category public -module _ {ℓ ℓ' : Level} {ℂ : Category {ℓ} {ℓ'}} { A B : Object ℂ } where +module _ {ℓ ℓ' : Level} {ℂ : Category {ℓ} {ℓ'}} { A B : ℂ .Object } where private open module ℂ = Category ℂ _+_ = ℂ._⊕_ @@ -59,36 +59,28 @@ module _ {ℓ ℓ' : Level} {ℂ : Category {ℓ} {ℓ'}} { A B : Object ℂ } w Monomorphism {X} f = ( g₀ g₁ : ℂ.Arrow X A ) → f + g₀ ≡ f + g₁ → g₀ ≡ g₁ iso-is-epi : ∀ {X} (f : ℂ.Arrow A B) → Isomorphism f → Epimorphism {X = X} f - -- Idea: Pre-compose with f- on both sides of the equality of eq to get - -- g₀ + f + f- ≡ g₁ + f + f- - -- which by left-inv reduces to the goal. iso-is-epi f (f- , left-inv , right-inv) g₀ g₁ eq = - trans (sym (fst ℂ.ident)) - ( trans (cong (_+_ g₀) (sym right-inv)) - ( trans ℂ.assoc - ( trans (cong (λ x → x + f-) eq) - ( trans (sym ℂ.assoc) - ( trans (cong (_+_ g₁) right-inv) (fst ℂ.ident)) - ) - ) - ) - ) + begin + g₀ ≡⟨ sym (fst ℂ.ident) ⟩ + g₀ + ℂ.𝟙 ≡⟨ cong (_+_ g₀) (sym right-inv) ⟩ + g₀ + (f + f-) ≡⟨ ℂ.assoc ⟩ + (g₀ + f) + f- ≡⟨ cong (λ x → x + f-) eq ⟩ + (g₁ + f) + f- ≡⟨ sym ℂ.assoc ⟩ + g₁ + (f + f-) ≡⟨ cong (_+_ g₁) right-inv ⟩ + g₁ + ℂ.𝟙 ≡⟨ fst ℂ.ident ⟩ + g₁ ∎ iso-is-mono : ∀ {X} (f : ℂ.Arrow A B ) → Isomorphism f → Monomorphism {X = X} f - -- For the next goal we do something similar: Post-compose with f- and use - -- right-inv to get the goal. iso-is-mono f (f- , (left-inv , right-inv)) g₀ g₁ eq = - trans (sym (snd ℂ.ident)) - ( trans (cong (λ x → x + g₀) (sym left-inv)) - ( trans (sym ℂ.assoc) - ( trans (cong (_+_ f-) eq) - ( trans ℂ.assoc - ( trans (cong (λ x → x + g₁) left-inv) (snd ℂ.ident) - ) - ) - ) - ) - ) + begin + g₀ ≡⟨ sym (snd ℂ.ident) ⟩ + ℂ.𝟙 + g₀ ≡⟨ cong (λ x → x + g₀) (sym left-inv) ⟩ + (f- + f) + g₀ ≡⟨ sym ℂ.assoc ⟩ + f- + (f + g₀) ≡⟨ cong (_+_ f-) eq ⟩ + f- + (f + g₁) ≡⟨ ℂ.assoc ⟩ + (f- + f) + g₁ ≡⟨ cong (λ x → x + g₁) left-inv ⟩ + ℂ.𝟙 + g₁ ≡⟨ snd ℂ.ident ⟩ + g₁ ∎ iso-is-epi-mono : ∀ {X} (f : ℂ.Arrow A B ) → Isomorphism f → Epimorphism {X = X} f × Monomorphism {X = X} f iso-is-epi-mono f iso = iso-is-epi f iso , iso-is-mono f iso @@ -102,9 +94,7 @@ epi-mono-is-not-iso f = -- Isomorphism of objects _≅_ : { ℓ ℓ' : Level } → { ℂ : Category {ℓ} {ℓ'} } → ( A B : Object ℂ ) → Set ℓ' -_≅_ {ℂ = ℂ} A B = Σ[ f ∈ ℂ.Arrow A B ] (Isomorphism {ℂ = ℂ} f) - where - open module ℂ = Category ℂ +_≅_ {ℂ = ℂ} A B = Σ[ f ∈ ℂ .Arrow A B ] (Isomorphism {ℂ = ℂ} f) IsProduct : ∀ {ℓ ℓ'} (ℂ : Category {ℓ} {ℓ'}) {A B obj : Object ℂ} (π₁ : Arrow ℂ obj A) (π₂ : Arrow ℂ obj B) → Set (ℓ ⊔ ℓ') IsProduct ℂ {A = A} {B = B} π₁ π₂ @@ -113,21 +103,23 @@ IsProduct ℂ {A = A} {B = B} π₁ π₂ where open module ℂ = Category ℂ --- Consider this style for efficiency: --- record R : Set where +-- Tip from Andrea; Consider this style for efficiency: +-- record IsProduct {ℓ ℓ' : Level} (ℂ : Category {ℓ} {ℓ'}) +-- {A B obj : Object ℂ} (π₁ : Arrow ℂ obj A) (π₂ : Arrow ℂ obj B) : Set (ℓ ⊔ ℓ') where -- field --- isP : IsProduct {!!} {!!} {!!} +-- isProduct : ∀ {X : ℂ .Object} (x₁ : ℂ .Arrow X A) (x₂ : ℂ .Arrow X B) +-- → ∃![ x ] (ℂ ._⊕_ π₁ x ≡ x₁ × ℂ. _⊕_ π₂ x ≡ x₂) -record Product {ℓ ℓ' : Level} {ℂ : Category {ℓ} {ℓ'}} (A B : Category.Object ℂ) : Set (ℓ ⊔ ℓ') where +record Product {ℓ ℓ' : Level} {ℂ : Category {ℓ} {ℓ'}} (A B : ℂ .Object) : Set (ℓ ⊔ ℓ') where no-eta-equality field - obj : Category.Object ℂ - proj₁ : Category.Arrow ℂ obj A - proj₂ : Category.Arrow ℂ obj B + obj : ℂ .Object + proj₁ : ℂ .Arrow obj A + proj₂ : ℂ .Arrow obj B {{isProduct}} : IsProduct ℂ proj₁ proj₂ mutual - catProduct : {ℓ : Level} → ( C D : Category {ℓ} {ℓ} ) → Category {ℓ} {ℓ} + catProduct : {ℓ : Level} → (C D : Category {ℓ} {ℓ}) → Category {ℓ} {ℓ} catProduct C D = record { Object = C.Object × D.Object @@ -145,8 +137,9 @@ mutual open module C = Category C open module D = Category D -- Two pairs are equal if their components are equal. - eqpair : {ℓ : Level} → { A : Set ℓ } → { B : Set ℓ } → { a a' : A } → { b b' : B } → a ≡ a' → b ≡ b' → (a , b) ≡ (a' , b') - eqpair {a = a} {b = b} eqa eqb = subst eqa (subst eqb (refl {x = (a , b)})) + eqpair : ∀ {ℓa ℓb} {A : Set ℓa} {B : Set ℓb} {a a' : A} {b b' : B} + → a ≡ a' → b ≡ b' → (a , b) ≡ (a' , b') + eqpair eqa eqb i = eqa i , eqb i -- arrowProduct : ∀ {ℓ} {C D : Category {ℓ} {ℓ}} → (Object C) × (Object D) → (Object C) × (Object D) → Set ℓ