Move functor-stuff to own module
This commit is contained in:
parent
7d6db415a1
commit
0cd75e6e31
|
@ -7,7 +7,6 @@ open import Data.Unit.Base
|
|||
open import Data.Product renaming (proj₁ to fst ; proj₂ to snd)
|
||||
open import Data.Empty
|
||||
open import Function
|
||||
|
||||
open import Cubical
|
||||
|
||||
postulate undefined : {ℓ : Level} → {A : Set ℓ} → A
|
||||
|
@ -31,61 +30,6 @@ record Category {ℓ ℓ'} : Set (lsuc (ℓ' ⊔ ℓ)) where
|
|||
|
||||
open Category public
|
||||
|
||||
record Functor {ℓc ℓc' ℓd ℓd'} (C : Category {ℓc} {ℓc'}) (D : Category {ℓd} {ℓd'})
|
||||
: Set (ℓc ⊔ ℓc' ⊔ ℓd ⊔ ℓd') where
|
||||
constructor functor
|
||||
private
|
||||
open module C = Category C
|
||||
open module D = Category D
|
||||
field
|
||||
func* : C.Object → D.Object
|
||||
func→ : {dom cod : C.Object} → C.Arrow dom cod → D.Arrow (func* dom) (func* cod)
|
||||
ident : { c : C.Object } → func→ (C.𝟙 {c}) ≡ D.𝟙 {func* c}
|
||||
-- TODO: Avoid use of ugly explicit arguments somehow.
|
||||
-- This guy managed to do it:
|
||||
-- https://github.com/copumpkin/categories/blob/master/Categories/Functor/Core.agda
|
||||
distrib : { c c' c'' : C.Object} {a : C.Arrow c c'} {a' : C.Arrow c' c''}
|
||||
→ func→ (a' C.⊕ a) ≡ func→ a' D.⊕ func→ a
|
||||
|
||||
module _ {ℓ ℓ' : Level} {A B C : Category {ℓ} {ℓ'}} (F : Functor B C) (G : Functor A B) where
|
||||
private
|
||||
open module F = Functor F
|
||||
open module G = Functor G
|
||||
open module A = Category A
|
||||
open module B = Category B
|
||||
open module C = Category C
|
||||
|
||||
F* = F.func*
|
||||
F→ = F.func→
|
||||
G* = G.func*
|
||||
G→ = G.func→
|
||||
module _ {a0 a1 a2 : A.Object} {α0 : A.Arrow a0 a1} {α1 : A.Arrow a1 a2} where
|
||||
|
||||
dist : (F→ ∘ G→) (α1 A.⊕ α0) ≡ (F→ ∘ G→) α1 C.⊕ (F→ ∘ G→) α0
|
||||
dist = begin
|
||||
(F→ ∘ G→) (α1 A.⊕ α0) ≡⟨ refl ⟩
|
||||
F→ (G→ (α1 A.⊕ α0)) ≡⟨ cong F→ G.distrib ⟩
|
||||
F→ ((G→ α1) B.⊕ (G→ α0)) ≡⟨ F.distrib ⟩
|
||||
(F→ ∘ G→) α1 C.⊕ (F→ ∘ G→) α0 ∎
|
||||
|
||||
functor-comp : Functor A C
|
||||
functor-comp =
|
||||
record
|
||||
{ func* = F* ∘ G*
|
||||
; func→ = F→ ∘ G→
|
||||
; ident = begin
|
||||
(F→ ∘ G→) (A.𝟙) ≡⟨ refl ⟩
|
||||
F→ (G→ (A.𝟙)) ≡⟨ cong F→ G.ident ⟩
|
||||
F→ (B.𝟙) ≡⟨ F.ident ⟩
|
||||
C.𝟙 ∎
|
||||
; distrib = dist
|
||||
}
|
||||
|
||||
-- The identity functor
|
||||
identity : {ℓ ℓ' : Level} → {C : Category {ℓ} {ℓ'}} → Functor C C
|
||||
-- Identity = record { F* = λ x → x ; F→ = λ x → x ; ident = refl ; distrib = refl }
|
||||
identity = functor (λ x → x) (λ x → x) (refl) (refl)
|
||||
|
||||
module _ {ℓ ℓ' : Level} {ℂ : Category {ℓ} {ℓ'}} { A B : Object ℂ } where
|
||||
private
|
||||
open module ℂ = Category ℂ
|
||||
|
|
62
src/Cat/Functor.agda
Normal file
62
src/Cat/Functor.agda
Normal file
|
@ -0,0 +1,62 @@
|
|||
module Cat.Functor where
|
||||
|
||||
open import Agda.Primitive
|
||||
open import Cubical
|
||||
open import Function
|
||||
|
||||
open import Cat.Category
|
||||
|
||||
record Functor {ℓc ℓc' ℓd ℓd'} (C : Category {ℓc} {ℓc'}) (D : Category {ℓd} {ℓd'})
|
||||
: Set (ℓc ⊔ ℓc' ⊔ ℓd ⊔ ℓd') where
|
||||
constructor functor
|
||||
private
|
||||
open module C = Category C
|
||||
open module D = Category D
|
||||
field
|
||||
func* : C.Object → D.Object
|
||||
func→ : {dom cod : C.Object} → C.Arrow dom cod → D.Arrow (func* dom) (func* cod)
|
||||
ident : { c : C.Object } → func→ (C.𝟙 {c}) ≡ D.𝟙 {func* c}
|
||||
-- TODO: Avoid use of ugly explicit arguments somehow.
|
||||
-- This guy managed to do it:
|
||||
-- https://github.com/copumpkin/categories/blob/master/Categories/Functor/Core.agda
|
||||
distrib : { c c' c'' : C.Object} {a : C.Arrow c c'} {a' : C.Arrow c' c''}
|
||||
→ func→ (a' C.⊕ a) ≡ func→ a' D.⊕ func→ a
|
||||
|
||||
module _ {ℓ ℓ' : Level} {A B C : Category {ℓ} {ℓ'}} (F : Functor B C) (G : Functor A B) where
|
||||
private
|
||||
open module F = Functor F
|
||||
open module G = Functor G
|
||||
open module A = Category A
|
||||
open module B = Category B
|
||||
open module C = Category C
|
||||
|
||||
F* = F.func*
|
||||
F→ = F.func→
|
||||
G* = G.func*
|
||||
G→ = G.func→
|
||||
module _ {a0 a1 a2 : A.Object} {α0 : A.Arrow a0 a1} {α1 : A.Arrow a1 a2} where
|
||||
|
||||
dist : (F→ ∘ G→) (α1 A.⊕ α0) ≡ (F→ ∘ G→) α1 C.⊕ (F→ ∘ G→) α0
|
||||
dist = begin
|
||||
(F→ ∘ G→) (α1 A.⊕ α0) ≡⟨ refl ⟩
|
||||
F→ (G→ (α1 A.⊕ α0)) ≡⟨ cong F→ G.distrib ⟩
|
||||
F→ ((G→ α1) B.⊕ (G→ α0)) ≡⟨ F.distrib ⟩
|
||||
(F→ ∘ G→) α1 C.⊕ (F→ ∘ G→) α0 ∎
|
||||
|
||||
functor-comp : Functor A C
|
||||
functor-comp =
|
||||
record
|
||||
{ func* = F* ∘ G*
|
||||
; func→ = F→ ∘ G→
|
||||
; ident = begin
|
||||
(F→ ∘ G→) (A.𝟙) ≡⟨ refl ⟩
|
||||
F→ (G→ (A.𝟙)) ≡⟨ cong F→ G.ident ⟩
|
||||
F→ (B.𝟙) ≡⟨ F.ident ⟩
|
||||
C.𝟙 ∎
|
||||
; distrib = dist
|
||||
}
|
||||
|
||||
-- The identity functor
|
||||
identity : {ℓ ℓ' : Level} → {C : Category {ℓ} {ℓ'}} → Functor C C
|
||||
-- Identity = record { F* = λ x → x ; F→ = λ x → x ; ident = refl ; distrib = refl }
|
||||
identity = functor (λ x → x) (λ x → x) (refl) (refl)
|
Loading…
Reference in a new issue