diff --git a/src/Cat/Categories/Sets.agda b/src/Cat/Categories/Sets.agda index af52c8b..3fa14ce 100644 --- a/src/Cat/Categories/Sets.agda +++ b/src/Cat/Categories/Sets.agda @@ -7,7 +7,6 @@ open import Cat.Prelude as P open import Cat.Category open import Cat.Category.Functor open import Cat.Category.Product -open import Cat.Wishlist open import Cat.Equivalence _⊙_ : {ℓa ℓb ℓc : Level} {A : Set ℓa} {B : Set ℓb} {C : Set ℓc} → (A ≃ B) → (B ≃ C) → A ≃ C diff --git a/src/Cat/Category/NaturalTransformation.agda b/src/Cat/Category/NaturalTransformation.agda index d8b20a8..1a7223d 100644 --- a/src/Cat/Category/NaturalTransformation.agda +++ b/src/Cat/Category/NaturalTransformation.agda @@ -25,7 +25,6 @@ module Nat = Data.Nat open import Cat.Category open import Cat.Category.Functor -open import Cat.Wishlist module Cat.Category.NaturalTransformation {ℓc ℓc' ℓd ℓd' : Level} diff --git a/src/Cat/Prelude.agda b/src/Cat/Prelude.agda index 71e5cbd..6835262 100644 --- a/src/Cat/Prelude.agda +++ b/src/Cat/Prelude.agda @@ -98,4 +98,10 @@ module _ {ℓ : Level} {A : Set ℓ} {a : A} where _ ≡⟨ pathJprop {x = a} (λ y x → A) _ ⟩ a ∎ -open import Cat.Wishlist public +module _ {ℓ : Level} {A : Set ℓ} where + open import Cubical.NType + open import Data.Nat using (_≤′_ ; ≤′-refl ; ≤′-step ; zero ; suc) + open import Cubical.NType.Properties + ntypeCumulative : ∀ {n m} → n ≤′ m → HasLevel ⟨ n ⟩₋₂ A → HasLevel ⟨ m ⟩₋₂ A + ntypeCumulative {m} ≤′-refl lvl = lvl + ntypeCumulative {n} {suc m} (≤′-step le) lvl = HasLevel+1 ⟨ m ⟩₋₂ (ntypeCumulative le lvl) diff --git a/src/Cat/Wishlist.agda b/src/Cat/Wishlist.agda deleted file mode 100644 index 37b8c87..0000000 --- a/src/Cat/Wishlist.agda +++ /dev/null @@ -1,16 +0,0 @@ -{-# OPTIONS --allow-unsolved-metas #-} -module Cat.Wishlist where - -open import Level hiding (suc; zero) -open import Cubical -open import Cubical.NType -open import Data.Nat using (_≤′_ ; ≤′-refl ; ≤′-step ; zero ; suc) -open import Agda.Builtin.Sigma - -open import Cubical.NType.Properties - - -module _ {ℓ : Level} {A : Set ℓ} where - ntypeCumulative : ∀ {n m} → n ≤′ m → HasLevel ⟨ n ⟩₋₂ A → HasLevel ⟨ m ⟩₋₂ A - ntypeCumulative {m} ≤′-refl lvl = lvl - ntypeCumulative {n} {suc m} (≤′-step le) lvl = HasLevel+1 ⟨ m ⟩₋₂ (ntypeCumulative le lvl)