diff --git a/src/Category/Rel.agda b/src/Category/Rel.agda index 42ed17e..e9bbdc4 100644 --- a/src/Category/Rel.agda +++ b/src/Category/Rel.agda @@ -22,7 +22,7 @@ Subset A = A → Set -- syntax subset P = ⦃ a ∈ A | P a ⦄ -- syntax subset-syntax A (λ a → B) = ⟨ a foo A ∣ B ⟩ --- Membership is function applicatiom. +-- Membership is (dependent) function applicatiom. _∈_ : {ℓ : Level} {A : Set ℓ} → A → Subset A → Set s ∈ S = S s @@ -30,7 +30,7 @@ infixl 45 _∈_ -- The diagnoal of a set is a synonym for equality. Diag : ∀ S → Subset (S × S) -Diag S (s₀ , s₁) = s₀ ≡ s₁ +Diag S (x , y) = x ≡ y -- Diag S = subset (S × S) (λ {(p , q) → p ≡ q}) -- Diag S = ⟨ ? foo ? ∣ ? ⟩ -- Diag S (s₀ , s₁) = ⦃ (s₀ , s₁) ∈ S | s₀ ≡ s₁ ⦄ @@ -147,9 +147,9 @@ module _ {A B C D : Set} {S : Subset (A × B)} {R : Subset (B × C)} {Q : Subset equi = fwd , isequiv -- assocc : Q + (R + S) ≡ (Q + R) + S - assocc : (Σ[ c ∈ C ] (Σ[ b ∈ B ] (a , b) ∈ S × (b , c) ∈ R) × (c , d) ∈ Q) + is-assoc : (Σ[ c ∈ C ] (Σ[ b ∈ B ] (a , b) ∈ S × (b , c) ∈ R) × (c , d) ∈ Q) ≡ (Σ[ b ∈ B ] (a , b) ∈ S × (Σ[ c ∈ C ] (b , c) ∈ R × (c , d) ∈ Q)) - assocc = equivToPath equi + is-assoc = equivToPath equi Rel : Category Rel = record @@ -157,6 +157,6 @@ Rel = record ; Arrow = λ S R → Subset (S × R) ; 𝟙 = λ {S} → Diag S ; _⊕_ = λ {A B C} S R → λ {( a , c ) → Σ[ b ∈ B ] ( (a , b) ∈ R × (b , c) ∈ S )} - ; assoc = funExt assocc + ; assoc = funExt is-assoc ; ident = funExt ident-l , funExt ident-r }