diff --git a/src/Cat/Category.agda b/src/Cat/Category.agda index 2576ee2..0ee54dd 100644 --- a/src/Cat/Category.agda +++ b/src/Cat/Category.agda @@ -199,6 +199,12 @@ record IsCategory {ℓa ℓb : Level} (ℂ : RawCategory ℓa ℓb) : Set (lsuc univalent≃ : Univalent≃ univalent≃ = _ , univalent + module _ {A B : Object} where + open import Cat.Equivalence using (module Equiv≃) + + iso-to-id : (A ≅ B) → (A ≡ B) + iso-to-id = fst (Equiv≃.toIso _ _ univalent) + -- | All projections are propositions. module Propositionality where propIsAssociative : isProp IsAssociative diff --git a/src/Cat/Category/Product.agda b/src/Cat/Category/Product.agda index c22e4b4..0e25ba2 100644 --- a/src/Cat/Category/Product.agda +++ b/src/Cat/Category/Product.agda @@ -160,36 +160,30 @@ module Try0 {ℓa ℓb : Level} {ℂ : Category ℓa ℓb} l = ℂ.rightIdentity arrowsAreSets : ArrowsAreSets - arrowsAreSets {X , x0 , x1} {Y , y0 , y1} (f , f0 , f1) (g , g0 , g1) p q = pq - where - -- prop : ∀ {X Y} (x y : ℂ.Arrow X Y) → isProp (x ≡ y) - -- prop = ℂ.arrowsAreSets - a0 a1 : f ≡ g - a0 i = proj₁ (p i) - a1 i = proj₁ (q i) - a : a0 ≡ a1 - a = ℂ.arrowsAreSets _ _ a0 a1 - module _ (i : I) where - r : f ≡ g - r = a i - module _ (j : I) where - prop0 : isProp (ℂ [ y0 ∘ r j ] ≡ x0) - prop0 = ℂ.arrowsAreSets _ _ - prop1 : isProp (ℂ [ y1 ∘ r j ] ≡ x1) - prop1 = ℂ.arrowsAreSets _ _ - prop : isProp (ℂ [ y0 ∘ r j ] ≡ x0 × ℂ [ y1 ∘ r j ] ≡ x1) - prop = propSig prop0 (λ _ → prop1) - helper : (b0 b1 : (ℂ [ y0 ∘ r j ]) ≡ x0 × (ℂ [ y1 ∘ r j ]) ≡ x1) → b0 ≡ b1 - helper _ _ = lemPropF (λ _ → prop) p - b : (ℂ [ y0 ∘ r j ]) ≡ x0 × (ℂ [ y1 ∘ r j ]) ≡ x1 - b = {!!} - pq : p ≡ q - pq i j = a i j , b i j + arrowsAreSets {X , x0 , x1} {Y , y0 , y1} + = sigPresNType {n = ⟨0⟩} ℂ.arrowsAreSets λ a → propSet (propEqs _) open Univalence isIdentity univalent : Univalent - univalent {A , a0 , a1} {B , b0 , b1} = {!!} + univalent {X , x} {Y , y} = {!res!} + where + open import Cat.Equivalence as E hiding (_≅_) + open import Cubical.Univalence + module _ (c : (X , x) ≅ (Y , y)) where + -- module _ (c : _ ≅ _) where + c0 : X ℂ.≅ Y + c0 = {!!} + f0 : X ≡ Y + f0 = ℂ.iso-to-id c0 + f1 : PathP (λ i → ℂ.Arrow (f0 i) A × ℂ.Arrow (f0 i) B) x y + f1 = {!!} + f : (X , x) ≡ (Y , y) + f i = f0 i , f1 i + iso : E.Isomorphism (id-to-iso (X , x) (Y , y)) + iso = f , record { verso-recto = {!!} ; recto-verso = {!!} } + res : isEquiv ((X , x) ≡ (Y , y)) ((X , x) ≅ (Y , y)) (id-to-iso (X , x) (Y , y)) + res = Equiv≃.fromIso _ _ iso isCat : IsCategory raw isCat = record diff --git a/src/Cat/Prelude.agda b/src/Cat/Prelude.agda index abe1ae4..370b300 100644 --- a/src/Cat/Prelude.agda +++ b/src/Cat/Prelude.agda @@ -28,7 +28,7 @@ open import Cubical.NType.Properties propIsContr : {ℓ : Level} → {A : Set ℓ} → isProp (isContr A) propIsContr = propHasLevel ⟨-2⟩ -open import Cubical.Sigma using (setSig ; sigPresSet) public +open import Cubical.Sigma using (setSig ; sigPresSet ; sigPresNType) public module _ (ℓ : Level) where -- FIXME Ask if we can push upstream.