Prove step 3 in proof of unvivalence for hSet without ua

This commit is contained in:
Frederik Hanghøj Iversen 2018-03-21 17:52:32 +01:00
parent 8f67ff9f36
commit 181edc0cd5
4 changed files with 65 additions and 33 deletions

View file

@ -8,7 +8,7 @@ open import Cat.Category
module _ (a b : Level) where
private
Object = Σ[ hA hSet {a} ] (proj₁ hA hSet {b})
Object = Σ[ hA hSet a ] (proj₁ hA hSet b)
Arr : Object Object Set (a b)
Arr ((A , _) , B) ((A' , _) , B') = Σ[ f (A A') ] ({x : A} proj₁ (B x) proj₁ (B' (f x)))
𝟙 : {A : Object} Arr A A

View file

@ -147,26 +147,47 @@ module _ ( : Level) where
Q→P : {a} Q a P a
Q→P = sym P→Q
f : Σ A P Σ A Q
f (a , pA) = a , coe P→Q pA
f (a , pA) = a , _≃_.eqv (eA a) pA
g : Σ A Q Σ A P
g (a , qA) = a , coe Q→P qA
g (a , qA) = a , g' qA
where
module E = Equivalence (eA a)
k : Eqv.Isomorphism _
k = E.toIso (_≃_.isEqv (eA a))
open Σ k renaming (proj₁ to g')
ve-re : (x : Σ A P) (g f) x x
ve-re x i = proj₁ x , eq i
where
eq : proj₂ ((g f) x) proj₂ x
eq = begin
proj₂ ((g f) x) ≡⟨⟩
coe Q→P (proj₂ (f x)) ≡⟨⟩
coe Q→P (coe P→Q (proj₂ x)) ≡⟨ inv-coe P→Q
proj₂ x
proj₂ (g (f (a , pA))) ≡⟨⟩
g' (_≃_.eqv (eA a) pA) ≡⟨ lem
pA
where
open Σ x renaming (proj₁ to a ; proj₂ to pA)
module E = Equivalence (eA a)
k : Eqv.Isomorphism _
k = E.toIso (_≃_.isEqv (eA a))
open Σ k renaming (proj₁ to g' ; proj₂ to inv)
module A = AreInverses inv
-- anti-funExt
lem : (g' (_≃_.eqv (eA a))) pA pA
lem i = A.verso-recto i pA
re-ve : (x : Σ A Q) (f g) x x
re-ve x i = proj₁ x , eq i
where
open Σ x renaming (proj₁ to a ; proj₂ to qA)
eq = begin
proj₂ ((f g) x) ≡⟨⟩
coe P→Q (coe Q→P (proj₂ x)) ≡⟨⟩
coe P→Q (coe (sym P→Q) (proj₂ x)) ≡⟨ inv-coe' P→Q
proj₂ x
_≃_.eqv (eA a) (g' qA) ≡⟨ (λ i A.recto-verso i qA)
qA
where
module E = Equivalence (eA a)
k : Eqv.Isomorphism _
k = E.toIso (_≃_.isEqv (eA a))
open Σ k renaming (proj₁ to g' ; proj₂ to inv)
module A = AreInverses inv
inv : AreInverses f g
inv = record
{ verso-recto = funExt ve-re
@ -279,15 +300,11 @@ module _ ( : Level) where
--
-- is contractible, which implies univalence.
univalent' : hA isContr (Σ[ hB Object ] hA hB)
univalent' hA = {!!} , {!!}
univalent[Contr] : hA isContr (Σ[ hB Object ] hA hB)
univalent[Contr] hA = {!!} , {!!}
module _ {hA hB : hSet } where
-- Thierry: `thr0` implies univalence.
univalent : isEquiv (hA hB) (hA hB) (Univalence.id-to-iso (λ {A} {B} isIdentity {A} {B}) hA hB)
univalent = univalent'→univalent univalent'
-- let k = _≃_.isEqv (sym≃ conclusion) in {! k!}
univalent : Univalent
univalent = from[Contr] univalent[Contr]
SetsIsCategory : IsCategory SetsRaw
IsCategory.isAssociative SetsIsCategory = refl

View file

@ -120,18 +120,16 @@ record RawCategory (a b : Level) : Set (lsuc (a ⊔ b)) where
Univalent : Set (a b)
Univalent = {A B : Object} isEquiv (A B) (A B) (id-to-iso A B)
-- Alternative formulation of univalence which is easier to prove in the
-- case of the functor category.
-- | Equivalent formulation of univalence.
Univalent[Contr] : Set _
Univalent[Contr] = A isContr (Σ[ X Object ] A X)
-- From: Thierry Coquand <Thierry.Coquand@cse.gu.se>
-- Date: Wed, Mar 21, 2018 at 3:12 PM
--
-- ∀ A → isContr (Σ[ X ∈ Object ] iso A X)
-- future work ideas: compile to CAM
Univalent' : Set _
Univalent' = A isContr (Σ[ X Object ] A X)
module _ (univalent' : Univalent') where
univalent'→univalent : Univalent
univalent'→univalent = {!!}
-- This is not so straight-forward so you can assume it
postulate from[Contr] : Univalent[Contr] Univalent
-- | The mere proposition of being a category.
--
@ -208,6 +206,24 @@ record IsCategory {a b : Level} ( : RawCategory a b) : Set (lsuc
hh = arrowsAreSets _ _ (snd x) (snd y)
in h i , hh i
module _ {A B : Object} {p q : A B} where
open Σ p renaming (proj₁ to pf)
open Σ (snd p) renaming (proj₁ to pg ; proj₂ to pAreInv)
open Σ q renaming (proj₁ to qf)
open Σ (snd q) renaming (proj₁ to qg ; proj₂ to qAreInv)
module _ (a : pf qf) (b : pg qg) where
private
open import Cubical.Sigma
open import Cubical.NType.Properties
-- Problem: How do I apply lempPropF twice?
cc : (λ i IsInverseOf (a i) pg) [ pAreInv _ ]
cc = lemPropF (λ x propIsInverseOf {A} {B} {x}) a
c : (λ i IsInverseOf (a i) (b i)) [ pAreInv qAreInv ]
c = lemPropF (λ x propIsInverseOf {A} {B} {{!!}}) {!cc!}
≅-equality : p q
≅-equality i = a i , b i , c i
module _ {A B : Object} {f : Arrow A B} where
isoIsProp : isProp (Isomorphism f)
isoIsProp a@(g , η , ε) a'@(g' , η' , ε') =

View file

@ -78,8 +78,8 @@ EndoFunctor : ∀ {a b} ( : Category a b) → Set _
EndoFunctor = Functor
module _
{a b : Level}
{ 𝔻 : Category a b}
{c c' d d' : Level}
{ : Category c c'} {𝔻 : Category d d'}
(F : RawFunctor 𝔻)
where
private
@ -96,8 +96,7 @@ module _
-- Alternate version of above where `F` is indexed by an interval
module _
{a b : Level}
{ 𝔻 : Category a b}
{c c' d d' : Level} { : Category c c'} {𝔻 : Category d d'}
{F : I RawFunctor 𝔻}
where
private
@ -109,7 +108,7 @@ module _
IsFunctorIsProp' isF0 isF1 = lemPropF {B = IsFunctor 𝔻}
(\ F propIsFunctor F) (\ i F i)
module _ { ' : Level} { 𝔻 : Category '} where
module _ {c c' d d' : Level} { : Category c c'} {𝔻 : Category d d'} where
open Functor
Functor≡ : {F G : Functor 𝔻}
Functor.raw F Functor.raw G