Move another proof to category definition

This commit is contained in:
Frederik Hanghøj Iversen 2018-02-26 20:36:39 +01:00
parent 101b2639e1
commit 1aaf81552c

View file

@ -48,12 +48,15 @@ module Monoidal {a b : Level} ( : Category a b) where
μ X η (R.func* X) 𝟙
× μ X R.func→ (η X) 𝟙
IsNatural' = {X Y f} μ Y R.func→ f η X f
IsDistributive' = {X Y Z} {f : Arrow X (R.func* Y)} {g : Arrow Y (R.func* Z)}
μ Z R.func→ (μ Z R.func→ g f)
μ Z R.func→ g (μ Y R.func→ f)
record IsMonad (raw : RawMonad) : Set where
open RawMonad raw public
field
isAssociative : IsAssociative
isInverse : IsInverse
isInverse : IsInverse
private
module R = Functor R
@ -68,6 +71,31 @@ module Monoidal {a b : Level} ( : Category a b) where
𝟙 f ≡⟨ proj₂ .isIdentity
f
isDistributive' : IsDistributive'
isDistributive' {X} {Y} {Z} {f} {g} = begin
μ Z R.func→ (μ Z R.func→ g f) ≡⟨ cong (λ φ μ Z φ) distrib
μ Z (R.func→ (μ Z) R.func→ (R.func→ g) R.func→ f) ≡⟨⟩
μ Z (R.func→ (μ Z) R².func→ g R.func→ f) ≡⟨ {!!} -- ●-solver?
(μ Z R.func→ (μ Z)) (R².func→ g R.func→ f) ≡⟨ cong (λ φ φ (R².func→ g R.func→ f)) lemmm
(μ Z μ (R.func* Z)) (R².func→ g R.func→ f) ≡⟨ {!!} -- ●-solver?
μ Z μ (R.func* Z) R².func→ g R.func→ f ≡⟨ {!!} -- ●-solver + lem4
μ Z R.func→ g μ Y R.func→ f ≡⟨ sym (Category.isAssociative )
μ Z R.func→ g (μ Y R.func→ f)
where
module R² = Functor F[ R R ]
distrib : {A B C D} {a : Arrow C D} {b : Arrow B C} {c : Arrow A B}
R.func→ (a b c)
R.func→ a R.func→ b R.func→ c
distrib = {!!}
comm : {A B C D E}
{a : Arrow D E} {b : Arrow C D} {c : Arrow B C} {d : Arrow A B}
a (b c d) a b c d
comm = {!!}
lemmm : μ Z R.func→ (μ Z) μ Z μ (R.func* Z)
lemmm = isAssociative
lem4 : μ (R.func* Z) R².func→ g R.func→ g μ Y
lem4 = μNat g
record Monad : Set where
field
raw : RawMonad
@ -212,7 +240,7 @@ module _ {a b : Level} { : Category a b} where
isIdentity : IsIdentity
isIdentity {X} = begin
bind pure ≡⟨⟩
bind pure ≡⟨⟩
bind (η X) ≡⟨⟩
μ X func→ R (η X) ≡⟨ proj₂ isInverse
𝟙
@ -232,38 +260,9 @@ module _ {a b : Level} { : Category a b} where
isDistributive : IsDistributive
isDistributive {X} {Y} {Z} g f = begin
bind g bind f ≡⟨⟩
μ Z R.func→ g (μ Y R.func→ f) ≡⟨ sym lem2
μ Z R.func→ g (μ Y R.func→ f) ≡⟨ sym isDistributive'
μ Z R.func→ (μ Z R.func→ g f) ≡⟨⟩
μ Z R.func→ (bind g f)
where
-- Proved it in reverse here... otherwise it could be neatly inlined.
lem2
: μ Z R.func→ (μ Z R.func→ g f)
μ Z R.func→ g (μ Y R.func→ f)
lem2 = begin
μ Z R.func→ (μ Z R.func→ g f) ≡⟨ cong (λ φ μ Z φ) distrib
μ Z (R.func→ (μ Z) R.func→ (R.func→ g) R.func→ f) ≡⟨⟩
μ Z (R.func→ (μ Z) RR.func→ g R.func→ f) ≡⟨ {!!} -- ●-solver?
(μ Z R.func→ (μ Z)) (RR.func→ g R.func→ f) ≡⟨ cong (λ φ φ (RR.func→ g R.func→ f)) lemmm
(μ Z μ (R.func* Z)) (RR.func→ g R.func→ f) ≡⟨ {!!} -- ●-solver?
μ Z μ (R.func* Z) RR.func→ g R.func→ f ≡⟨ {!!} -- ●-solver + lem4
μ Z R.func→ g μ Y R.func→ f ≡⟨ sym (Category.isAssociative )
μ Z R.func→ g (μ Y R.func→ f)
where
module RR = Functor F[ R R ]
distrib : {A B C D} {a : Arrow C D} {b : Arrow B C} {c : Arrow A B}
R.func→ (a b c)
R.func→ a R.func→ b R.func→ c
distrib = {!!}
comm : {A B C D E}
{a : Arrow D E} {b : Arrow C D} {c : Arrow B C} {d : Arrow A B}
a (b c d) a b c d
comm = {!!}
μN = proj₂ μNatTrans
lemmm : μ Z R.func→ (μ Z) μ Z μ (R.func* Z)
lemmm = isAssociative
lem4 : μ (R.func* Z) RR.func→ g R.func→ g μ Y
lem4 = μN g
module KI = K.IsMonad
forthIsMonad : K.IsMonad (forthRaw raw)