Rename identity in category to ascii-name
This commit is contained in:
parent
41b442c0d8
commit
1c6d9ad2b5
|
@ -17,7 +17,7 @@ module _ (ℓ ℓ' : Level) where
|
|||
RawCat : RawCategory (lsuc (ℓ ⊔ ℓ')) (ℓ ⊔ ℓ')
|
||||
RawCategory.Object RawCat = Category ℓ ℓ'
|
||||
RawCategory.Arrow RawCat = Functor
|
||||
RawCategory.𝟙 RawCat = Functors.identity
|
||||
RawCategory.identity RawCat = Functors.identity
|
||||
RawCategory._∘_ RawCat = F[_∘_]
|
||||
|
||||
-- NB! `ArrowsAreSets RawCat` is *not* provable. The type of functors,
|
||||
|
@ -48,8 +48,8 @@ module CatProduct {ℓ ℓ' : Level} (ℂ 𝔻 : Category ℓ ℓ') where
|
|||
Obj = ℂ.Object × 𝔻.Object
|
||||
Arr : Obj → Obj → Set ℓ'
|
||||
Arr (c , d) (c' , d') = ℂ [ c , c' ] × 𝔻 [ d , d' ]
|
||||
𝟙 : {o : Obj} → Arr o o
|
||||
𝟙 = ℂ.𝟙 , 𝔻.𝟙
|
||||
identity : {o : Obj} → Arr o o
|
||||
identity = ℂ.identity , 𝔻.identity
|
||||
_∘_ :
|
||||
{a b c : Obj} →
|
||||
Arr b c →
|
||||
|
@ -60,14 +60,14 @@ module CatProduct {ℓ ℓ' : Level} (ℂ 𝔻 : Category ℓ ℓ') where
|
|||
rawProduct : RawCategory ℓ ℓ'
|
||||
RawCategory.Object rawProduct = Obj
|
||||
RawCategory.Arrow rawProduct = Arr
|
||||
RawCategory.𝟙 rawProduct = 𝟙
|
||||
RawCategory.identity rawProduct = identity
|
||||
RawCategory._∘_ rawProduct = _∘_
|
||||
|
||||
open RawCategory rawProduct
|
||||
|
||||
arrowsAreSets : ArrowsAreSets
|
||||
arrowsAreSets = setSig {sA = ℂ.arrowsAreSets} {sB = λ x → 𝔻.arrowsAreSets}
|
||||
isIdentity : IsIdentity 𝟙
|
||||
isIdentity : IsIdentity identity
|
||||
isIdentity
|
||||
= Σ≡ (fst ℂ.isIdentity) (fst 𝔻.isIdentity)
|
||||
, Σ≡ (snd ℂ.isIdentity) (snd 𝔻.isIdentity)
|
||||
|
@ -202,14 +202,14 @@ module CatExponential {ℓ : Level} (ℂ 𝔻 : Category ℓ ℓ) where
|
|||
module _ {c : Functor ℂ 𝔻 × ℂ.Object} where
|
||||
open Σ c renaming (proj₁ to F ; proj₂ to C)
|
||||
|
||||
ident : fmap {c} {c} (identityNT F , ℂ.𝟙 {A = snd c}) ≡ 𝔻.𝟙
|
||||
ident : fmap {c} {c} (identityNT F , ℂ.identity {A = snd c}) ≡ 𝔻.identity
|
||||
ident = begin
|
||||
fmap {c} {c} (Category.𝟙 (object ⊗ ℂ) {c}) ≡⟨⟩
|
||||
fmap {c} {c} (idN F , ℂ.𝟙) ≡⟨⟩
|
||||
𝔻 [ identityTrans F C ∘ F.fmap ℂ.𝟙 ] ≡⟨⟩
|
||||
𝔻 [ 𝔻.𝟙 ∘ F.fmap ℂ.𝟙 ] ≡⟨ 𝔻.leftIdentity ⟩
|
||||
F.fmap ℂ.𝟙 ≡⟨ F.isIdentity ⟩
|
||||
𝔻.𝟙 ∎
|
||||
fmap {c} {c} (Category.identity (object ⊗ ℂ) {c}) ≡⟨⟩
|
||||
fmap {c} {c} (idN F , ℂ.identity) ≡⟨⟩
|
||||
𝔻 [ identityTrans F C ∘ F.fmap ℂ.identity ] ≡⟨⟩
|
||||
𝔻 [ 𝔻.identity ∘ F.fmap ℂ.identity ] ≡⟨ 𝔻.leftIdentity ⟩
|
||||
F.fmap ℂ.identity ≡⟨ F.isIdentity ⟩
|
||||
𝔻.identity ∎
|
||||
where
|
||||
module F = Functor F
|
||||
|
||||
|
@ -278,16 +278,16 @@ module CatExponential {ℓ : Level} (ℂ 𝔻 : Category ℓ ℓ) where
|
|||
transpose : Functor 𝔸 object
|
||||
eq : F[ eval ∘ (parallelProduct transpose (Functors.identity {ℂ = ℂ})) ] ≡ F
|
||||
-- eq : F[ :eval: ∘ {!!} ] ≡ F
|
||||
-- eq : Catℓ [ :eval: ∘ (HasProducts._|×|_ hasProducts transpose (𝟙 Catℓ {o = ℂ})) ] ≡ F
|
||||
-- eq : Catℓ [ :eval: ∘ (HasProducts._|×|_ hasProducts transpose (identity Catℓ {o = ℂ})) ] ≡ F
|
||||
-- eq' : (Catℓ [ :eval: ∘
|
||||
-- (record { product = product } HasProducts.|×| transpose)
|
||||
-- (𝟙 Catℓ)
|
||||
-- (identity Catℓ)
|
||||
-- ])
|
||||
-- ≡ F
|
||||
|
||||
-- For some reason after `e8215b2c051062c6301abc9b3f6ec67106259758`
|
||||
-- `catTranspose` makes Agda hang. catTranspose : ∃![ F~ ] (Catℓ [
|
||||
-- :eval: ∘ (parallelProduct F~ (𝟙 Catℓ {o = ℂ}))] ≡ F) catTranspose =
|
||||
-- :eval: ∘ (parallelProduct F~ (identity Catℓ {o = ℂ}))] ≡ F) catTranspose =
|
||||
-- transpose , eq
|
||||
|
||||
-- We don't care about filling out the holes below since they are anyways hidden
|
||||
|
|
|
@ -67,7 +67,7 @@ module _ {ℓ ℓ' : Level} (Ns : Set ℓ) where
|
|||
Rawℂ : RawCategory ℓ ℓ -- ℓo (lsuc lzero ⊔ ℓo)
|
||||
Raw.Object Rawℂ = FiniteDecidableSubset
|
||||
Raw.Arrow Rawℂ = Hom
|
||||
Raw.𝟙 Rawℂ {o} = inj₁ , λ { (i , ii) (j , jj) eq → Σ≡ eq {!refl!} }
|
||||
Raw.identity Rawℂ {o} = inj₁ , λ { (i , ii) (j , jj) eq → Σ≡ eq {!refl!} }
|
||||
Raw._∘_ Rawℂ = {!!}
|
||||
|
||||
postulate IsCategoryℂ : IsCategory Rawℂ
|
||||
|
|
|
@ -11,9 +11,9 @@ module _ (ℓa ℓb : Level) where
|
|||
Object = Σ[ hA ∈ hSet ℓa ] (proj₁ hA → hSet ℓb)
|
||||
Arr : Object → Object → Set (ℓa ⊔ ℓb)
|
||||
Arr ((A , _) , B) ((A' , _) , B') = Σ[ f ∈ (A → A') ] ({x : A} → proj₁ (B x) → proj₁ (B' (f x)))
|
||||
𝟙 : {A : Object} → Arr A A
|
||||
proj₁ 𝟙 = λ x → x
|
||||
proj₂ 𝟙 = λ b → b
|
||||
identity : {A : Object} → Arr A A
|
||||
proj₁ identity = λ x → x
|
||||
proj₂ identity = λ b → b
|
||||
_∘_ : {a b c : Object} → Arr b c → Arr a b → Arr a c
|
||||
(g , g') ∘ (f , f') = g Function.∘ f , g' Function.∘ f'
|
||||
|
||||
|
@ -21,16 +21,16 @@ module _ (ℓa ℓb : Level) where
|
|||
RawFam = record
|
||||
{ Object = Object
|
||||
; Arrow = Arr
|
||||
; 𝟙 = λ { {A} → 𝟙 {A = A}}
|
||||
; identity = λ { {A} → identity {A = A}}
|
||||
; _∘_ = λ {a b c} → _∘_ {a} {b} {c}
|
||||
}
|
||||
|
||||
open RawCategory RawFam hiding (Object ; 𝟙)
|
||||
open RawCategory RawFam hiding (Object ; identity)
|
||||
|
||||
isAssociative : IsAssociative
|
||||
isAssociative = Σ≡ refl refl
|
||||
|
||||
isIdentity : IsIdentity λ { {A} → 𝟙 {A} }
|
||||
isIdentity : IsIdentity λ { {A} → identity {A} }
|
||||
isIdentity = (Σ≡ refl refl) , Σ≡ refl refl
|
||||
|
||||
open import Cubical.NType.Properties
|
||||
|
|
|
@ -29,7 +29,7 @@ module _ {ℓa ℓb : Level} (ℂ : Category ℓa ℓb) where
|
|||
RawFree : RawCategory ℓa (ℓa ⊔ ℓb)
|
||||
RawCategory.Object RawFree = ℂ.Object
|
||||
RawCategory.Arrow RawFree = Path ℂ.Arrow
|
||||
RawCategory.𝟙 RawFree = empty
|
||||
RawCategory.identity RawFree = empty
|
||||
RawCategory._∘_ RawFree = concatenate
|
||||
|
||||
open RawCategory RawFree
|
||||
|
@ -52,7 +52,7 @@ module _ {ℓa ℓb : Level} (ℂ : Category ℓa ℓb) where
|
|||
ident-l : ∀ {A} {B} {p : Path ℂ.Arrow A B} → concatenate empty p ≡ p
|
||||
ident-l = refl
|
||||
|
||||
isIdentity : IsIdentity 𝟙
|
||||
isIdentity : IsIdentity identity
|
||||
isIdentity = ident-l , ident-r
|
||||
|
||||
open Univalence isIdentity
|
||||
|
|
|
@ -1,16 +1,16 @@
|
|||
{-# OPTIONS --allow-unsolved-metas --cubical #-}
|
||||
{-# OPTIONS --allow-unsolved-metas --cubical --caching #-}
|
||||
module Cat.Categories.Fun where
|
||||
|
||||
open import Cat.Prelude
|
||||
|
||||
open import Cat.Category
|
||||
open import Cat.Category.Functor
|
||||
import Cat.Category.NaturalTransformation
|
||||
as NaturalTransformation
|
||||
|
||||
module Fun {ℓc ℓc' ℓd ℓd' : Level} (ℂ : Category ℓc ℓc') (𝔻 : Category ℓd ℓd') where
|
||||
import Cat.Category.NaturalTransformation ℂ 𝔻
|
||||
as NaturalTransformation
|
||||
open NaturalTransformation public hiding (module Properties)
|
||||
open NaturalTransformation.Properties
|
||||
open NaturalTransformation ℂ 𝔻 public hiding (module Properties)
|
||||
open NaturalTransformation.Properties ℂ 𝔻
|
||||
private
|
||||
module ℂ = Category ℂ
|
||||
module 𝔻 = Category 𝔻
|
||||
|
@ -19,10 +19,10 @@ module Fun {ℓc ℓc' ℓd ℓd' : Level} (ℂ : Category ℓc ℓc') (𝔻 : C
|
|||
raw : RawCategory (ℓc ⊔ ℓc' ⊔ ℓd ⊔ ℓd') (ℓc ⊔ ℓc' ⊔ ℓd')
|
||||
RawCategory.Object raw = Functor ℂ 𝔻
|
||||
RawCategory.Arrow raw = NaturalTransformation
|
||||
RawCategory.𝟙 raw {F} = identity F
|
||||
RawCategory.identity raw {F} = identity F
|
||||
RawCategory._∘_ raw {F} {G} {H} = NT[_∘_] {F} {G} {H}
|
||||
|
||||
open RawCategory raw
|
||||
open RawCategory raw hiding (identity)
|
||||
open Univalence (λ {A} {B} {f} → isIdentity {F = A} {B} {f})
|
||||
|
||||
module _ (F : Functor ℂ 𝔻) where
|
||||
|
@ -46,10 +46,10 @@ module Fun {ℓc ℓc' ℓd ℓd' : Level} (ℂ : Category ℓc ℓc') (𝔻 : C
|
|||
-- g = T[ η ∘ θ ] {!!}
|
||||
|
||||
ntF : NaturalTransformation F F
|
||||
ntF = 𝟙 {A = F}
|
||||
ntF = identity F
|
||||
|
||||
ntG : NaturalTransformation G G
|
||||
ntG = 𝟙 {A = G}
|
||||
ntG = identity G
|
||||
|
||||
idFunctor = Functors.identity
|
||||
|
||||
|
@ -103,14 +103,14 @@ module Fun {ℓc ℓc' ℓd ℓd' : Level} (ℂ : Category ℓc ℓc') (𝔻 : C
|
|||
-- The transformation will be the identity on 𝔻. Such an arrow has the
|
||||
-- type `A.omap A → A.omap A`. Which we can coerce to have the type
|
||||
-- `A.omap → B.omap` since `A` and `B` are equal.
|
||||
coe𝟙 : Transformation A B
|
||||
coe𝟙 X = coe coerceAB 𝔻.𝟙
|
||||
coeidentity : Transformation A B
|
||||
coeidentity X = coe coerceAB 𝔻.identity
|
||||
|
||||
module _ {a b : ℂ.Object} (f : ℂ [ a , b ]) where
|
||||
nat' : 𝔻 [ coe𝟙 b ∘ A.fmap f ] ≡ 𝔻 [ B.fmap f ∘ coe𝟙 a ]
|
||||
nat' : 𝔻 [ coeidentity b ∘ A.fmap f ] ≡ 𝔻 [ B.fmap f ∘ coeidentity a ]
|
||||
nat' = begin
|
||||
(𝔻 [ coe𝟙 b ∘ A.fmap f ]) ≡⟨ {!!} ⟩
|
||||
(𝔻 [ B.fmap f ∘ coe𝟙 a ]) ∎
|
||||
(𝔻 [ coeidentity b ∘ A.fmap f ]) ≡⟨ {!!} ⟩
|
||||
(𝔻 [ B.fmap f ∘ coeidentity a ]) ∎
|
||||
|
||||
transs : (i : I) → Transformation A (p i)
|
||||
transs = {!!}
|
||||
|
@ -118,26 +118,26 @@ module Fun {ℓc ℓc' ℓd ℓd' : Level} (ℂ : Category ℓc ℓc') (𝔻 : C
|
|||
natt : (i : I) → Natural A (p i) {!!}
|
||||
natt = {!!}
|
||||
|
||||
t : Natural A B coe𝟙
|
||||
t : Natural A B coeidentity
|
||||
t = coe c (identityNatural A)
|
||||
where
|
||||
c : Natural A A (identityTrans A) ≡ Natural A B coe𝟙
|
||||
c : Natural A A (identityTrans A) ≡ Natural A B coeidentity
|
||||
c = begin
|
||||
Natural A A (identityTrans A) ≡⟨ (λ x → {!natt ?!}) ⟩
|
||||
Natural A B coe𝟙 ∎
|
||||
Natural A B coeidentity ∎
|
||||
-- cong (λ φ → {!Natural A A (identityTrans A)!}) {!!}
|
||||
|
||||
k : Natural A A (identityTrans A) → Natural A B coe𝟙
|
||||
k : Natural A A (identityTrans A) → Natural A B coeidentity
|
||||
k n {a} {b} f = res
|
||||
where
|
||||
res : (𝔻 [ coe𝟙 b ∘ A.fmap f ]) ≡ (𝔻 [ B.fmap f ∘ coe𝟙 a ])
|
||||
res : (𝔻 [ coeidentity b ∘ A.fmap f ]) ≡ (𝔻 [ B.fmap f ∘ coeidentity a ])
|
||||
res = {!!}
|
||||
|
||||
nat : Natural A B coe𝟙
|
||||
nat : Natural A B coeidentity
|
||||
nat = nat'
|
||||
|
||||
fromEq : NaturalTransformation A B
|
||||
fromEq = coe𝟙 , nat
|
||||
fromEq = coeidentity , nat
|
||||
|
||||
module _ {A B : Functor ℂ 𝔻} where
|
||||
obverse : A ≡ B → A ≅ B
|
||||
|
@ -147,9 +147,9 @@ module Fun {ℓc ℓc' ℓd ℓd' : Level} (ℂ : Category ℓc ℓc') (𝔻 : C
|
|||
ob = fromEq p
|
||||
re : Arrow B A
|
||||
re = fromEq (sym p)
|
||||
vr : _∘_ {A = A} {B} {A} re ob ≡ 𝟙 {A}
|
||||
vr : _∘_ {A = A} {B} {A} re ob ≡ identity A
|
||||
vr = {!!}
|
||||
rv : _∘_ {A = B} {A} {B} ob re ≡ 𝟙 {B}
|
||||
rv : _∘_ {A = B} {A} {B} ob re ≡ identity B
|
||||
rv = {!!}
|
||||
isInverse : IsInverseOf {A} {B} ob re
|
||||
isInverse = vr , rv
|
||||
|
@ -183,23 +183,42 @@ module Fun {ℓc ℓc' ℓd ℓd' : Level} (ℂ : Category ℓc ℓc') (𝔻 : C
|
|||
Category.raw Fun = raw
|
||||
Category.isCategory Fun = isCategory
|
||||
|
||||
-- module _ {ℓ ℓ' : Level} (ℂ : Category ℓ ℓ') where
|
||||
-- private
|
||||
-- open import Cat.Categories.Sets
|
||||
-- open NaturalTransformation (opposite ℂ) (𝓢𝓮𝓽 ℓ')
|
||||
module _ {ℓ ℓ' : Level} (ℂ : Category ℓ ℓ') where
|
||||
private
|
||||
open import Cat.Categories.Sets
|
||||
open NaturalTransformation (opposite ℂ) (𝓢𝓮𝓽 ℓ')
|
||||
module K = Fun (opposite ℂ) (𝓢𝓮𝓽 ℓ')
|
||||
module F = Category K.Fun
|
||||
|
||||
-- -- Restrict the functors to Presheafs.
|
||||
-- rawPresh : RawCategory (ℓ ⊔ lsuc ℓ') (ℓ ⊔ ℓ')
|
||||
-- rawPresh = record
|
||||
-- { Object = Presheaf ℂ
|
||||
-- ; Arrow = NaturalTransformation
|
||||
-- ; 𝟙 = λ {F} → identity F
|
||||
-- ; _∘_ = λ {F G H} → NT[_∘_] {F = F} {G = G} {H = H}
|
||||
-- }
|
||||
-- instance
|
||||
-- isCategory : IsCategory rawPresh
|
||||
-- isCategory = Fun.isCategory _ _
|
||||
-- Restrict the functors to Presheafs.
|
||||
raw : RawCategory (ℓ ⊔ lsuc ℓ') (ℓ ⊔ ℓ')
|
||||
raw = record
|
||||
{ Object = Presheaf ℂ
|
||||
; Arrow = NaturalTransformation
|
||||
; identity = λ {F} → identity F
|
||||
; _∘_ = λ {F G H} → NT[_∘_] {F = F} {G = G} {H = H}
|
||||
}
|
||||
|
||||
-- Presh : Category (ℓ ⊔ lsuc ℓ') (ℓ ⊔ ℓ')
|
||||
-- Category.raw Presh = rawPresh
|
||||
-- Category.isCategory Presh = isCategory
|
||||
isCategory : IsCategory raw
|
||||
isCategory = record
|
||||
{ isAssociative =
|
||||
λ{ {A} {B} {C} {D} {f} {g} {h}
|
||||
→ F.isAssociative {A} {B} {C} {D} {f} {g} {h}
|
||||
}
|
||||
; isIdentity =
|
||||
λ{ {A} {B} {f}
|
||||
→ F.isIdentity {A} {B} {f}
|
||||
}
|
||||
; arrowsAreSets =
|
||||
λ{ {A} {B}
|
||||
→ F.arrowsAreSets {A} {B}
|
||||
}
|
||||
; univalent =
|
||||
λ{ {A} {B}
|
||||
→ F.univalent {A} {B}
|
||||
}
|
||||
}
|
||||
|
||||
Presh : Category (ℓ ⊔ lsuc ℓ') (ℓ ⊔ ℓ')
|
||||
Category.raw Presh = raw
|
||||
Category.isCategory Presh = isCategory
|
||||
|
|
|
@ -153,7 +153,7 @@ RawRel : RawCategory (lsuc lzero) (lsuc lzero)
|
|||
RawRel = record
|
||||
{ Object = Set
|
||||
; Arrow = λ S R → Subset (S × R)
|
||||
; 𝟙 = λ {S} → Diag S
|
||||
; identity = λ {S} → Diag S
|
||||
; _∘_ = λ {A B C} S R → λ {( a , c ) → Σ[ b ∈ B ] ( (a , b) ∈ R × (b , c) ∈ S )}
|
||||
}
|
||||
|
||||
|
|
|
@ -62,7 +62,7 @@ module _ (ℓ : Level) where
|
|||
SetsRaw : RawCategory (lsuc ℓ) ℓ
|
||||
RawCategory.Object SetsRaw = hSet ℓ
|
||||
RawCategory.Arrow SetsRaw (T , _) (U , _) = T → U
|
||||
RawCategory.𝟙 SetsRaw = Function.id
|
||||
RawCategory.identity SetsRaw = Function.id
|
||||
RawCategory._∘_ SetsRaw = Function._∘′_
|
||||
|
||||
open RawCategory SetsRaw hiding (_∘_)
|
||||
|
|
|
@ -12,7 +12,7 @@
|
|||
--
|
||||
-- Data
|
||||
-- ----
|
||||
-- 𝟙; the identity arrow
|
||||
-- identity; the identity arrow
|
||||
-- _∘_; function composition
|
||||
--
|
||||
-- Laws
|
||||
|
@ -50,7 +50,7 @@ record RawCategory (ℓa ℓb : Level) : Set (lsuc (ℓa ⊔ ℓb)) where
|
|||
field
|
||||
Object : Set ℓa
|
||||
Arrow : Object → Object → Set ℓb
|
||||
𝟙 : {A : Object} → Arrow A A
|
||||
identity : {A : Object} → Arrow A A
|
||||
_∘_ : {A B C : Object} → Arrow B C → Arrow A B → Arrow A C
|
||||
|
||||
infixl 10 _∘_ _>>>_
|
||||
|
@ -82,7 +82,7 @@ record RawCategory (ℓa ℓb : Level) : Set (lsuc (ℓa ⊔ ℓb)) where
|
|||
ArrowsAreSets = ∀ {A B : Object} → isSet (Arrow A B)
|
||||
|
||||
IsInverseOf : ∀ {A B} → (Arrow A B) → (Arrow B A) → Set ℓb
|
||||
IsInverseOf = λ f g → g ∘ f ≡ 𝟙 × f ∘ g ≡ 𝟙
|
||||
IsInverseOf = λ f g → g ∘ f ≡ identity × f ∘ g ≡ identity
|
||||
|
||||
Isomorphism : ∀ {A B} → (f : Arrow A B) → Set ℓb
|
||||
Isomorphism {A} {B} f = Σ[ g ∈ Arrow B A ] IsInverseOf f g
|
||||
|
@ -110,10 +110,10 @@ record RawCategory (ℓa ℓb : Level) : Set (lsuc (ℓa ⊔ ℓb)) where
|
|||
Terminal = Σ Object IsTerminal
|
||||
|
||||
-- | Univalence is indexed by a raw category as well as an identity proof.
|
||||
module Univalence (isIdentity : IsIdentity 𝟙) where
|
||||
module Univalence (isIdentity : IsIdentity identity) where
|
||||
-- | The identity isomorphism
|
||||
idIso : (A : Object) → A ≅ A
|
||||
idIso A = 𝟙 , 𝟙 , isIdentity
|
||||
idIso A = identity , identity , isIdentity
|
||||
|
||||
-- | Extract an isomorphism from an equality
|
||||
--
|
||||
|
@ -150,16 +150,16 @@ record IsCategory {ℓa ℓb : Level} (ℂ : RawCategory ℓa ℓb) : Set (lsuc
|
|||
open RawCategory ℂ public
|
||||
field
|
||||
isAssociative : IsAssociative
|
||||
isIdentity : IsIdentity 𝟙
|
||||
isIdentity : IsIdentity identity
|
||||
arrowsAreSets : ArrowsAreSets
|
||||
open Univalence isIdentity public
|
||||
field
|
||||
univalent : Univalent
|
||||
|
||||
leftIdentity : {A B : Object} {f : Arrow A B} → 𝟙 ∘ f ≡ f
|
||||
leftIdentity : {A B : Object} {f : Arrow A B} → identity ∘ f ≡ f
|
||||
leftIdentity {A} {B} {f} = fst (isIdentity {A = A} {B} {f})
|
||||
|
||||
rightIdentity : {A B : Object} {f : Arrow A B} → f ∘ 𝟙 ≡ f
|
||||
rightIdentity : {A B : Object} {f : Arrow A B} → f ∘ identity ≡ f
|
||||
rightIdentity {A} {B} {f} = snd (isIdentity {A = A} {B} {f})
|
||||
|
||||
------------
|
||||
|
@ -171,24 +171,24 @@ record IsCategory {ℓa ℓb : Level} (ℂ : RawCategory ℓa ℓb) : Set (lsuc
|
|||
iso→epi : Isomorphism f → Epimorphism {X = X} f
|
||||
iso→epi (f- , left-inv , right-inv) g₀ g₁ eq = begin
|
||||
g₀ ≡⟨ sym rightIdentity ⟩
|
||||
g₀ ∘ 𝟙 ≡⟨ cong (_∘_ g₀) (sym right-inv) ⟩
|
||||
g₀ ∘ identity ≡⟨ cong (_∘_ g₀) (sym right-inv) ⟩
|
||||
g₀ ∘ (f ∘ f-) ≡⟨ isAssociative ⟩
|
||||
(g₀ ∘ f) ∘ f- ≡⟨ cong (λ φ → φ ∘ f-) eq ⟩
|
||||
(g₁ ∘ f) ∘ f- ≡⟨ sym isAssociative ⟩
|
||||
g₁ ∘ (f ∘ f-) ≡⟨ cong (_∘_ g₁) right-inv ⟩
|
||||
g₁ ∘ 𝟙 ≡⟨ rightIdentity ⟩
|
||||
g₁ ∘ identity ≡⟨ rightIdentity ⟩
|
||||
g₁ ∎
|
||||
|
||||
iso→mono : Isomorphism f → Monomorphism {X = X} f
|
||||
iso→mono (f- , left-inv , right-inv) g₀ g₁ eq =
|
||||
begin
|
||||
g₀ ≡⟨ sym leftIdentity ⟩
|
||||
𝟙 ∘ g₀ ≡⟨ cong (λ φ → φ ∘ g₀) (sym left-inv) ⟩
|
||||
identity ∘ g₀ ≡⟨ cong (λ φ → φ ∘ g₀) (sym left-inv) ⟩
|
||||
(f- ∘ f) ∘ g₀ ≡⟨ sym isAssociative ⟩
|
||||
f- ∘ (f ∘ g₀) ≡⟨ cong (_∘_ f-) eq ⟩
|
||||
f- ∘ (f ∘ g₁) ≡⟨ isAssociative ⟩
|
||||
(f- ∘ f) ∘ g₁ ≡⟨ cong (λ φ → φ ∘ g₁) left-inv ⟩
|
||||
𝟙 ∘ g₁ ≡⟨ leftIdentity ⟩
|
||||
identity ∘ g₁ ≡⟨ leftIdentity ⟩
|
||||
g₁ ∎
|
||||
|
||||
iso→epi×mono : Isomorphism f → Epimorphism {X = X} f × Monomorphism {X = X} f
|
||||
|
@ -229,10 +229,10 @@ record IsCategory {ℓa ℓb : Level} (ℂ : RawCategory ℓa ℓb) : Set (lsuc
|
|||
geq : g ≡ g'
|
||||
geq = begin
|
||||
g ≡⟨ sym rightIdentity ⟩
|
||||
g ∘ 𝟙 ≡⟨ cong (λ φ → g ∘ φ) (sym ε') ⟩
|
||||
g ∘ identity ≡⟨ cong (λ φ → g ∘ φ) (sym ε') ⟩
|
||||
g ∘ (f ∘ g') ≡⟨ isAssociative ⟩
|
||||
(g ∘ f) ∘ g' ≡⟨ cong (λ φ → φ ∘ g') η ⟩
|
||||
𝟙 ∘ g' ≡⟨ leftIdentity ⟩
|
||||
identity ∘ g' ≡⟨ leftIdentity ⟩
|
||||
g' ∎
|
||||
|
||||
propUnivalent : isProp Univalent
|
||||
|
@ -274,9 +274,9 @@ record IsCategory {ℓa ℓb : Level} (ℂ : RawCategory ℓa ℓb) : Set (lsuc
|
|||
Xprop f g = trans (sym (snd Xit f)) (snd Xit g)
|
||||
Yprop : isProp (Arrow Y Y)
|
||||
Yprop f g = trans (sym (snd Yit f)) (snd Yit g)
|
||||
left : Y→X ∘ X→Y ≡ 𝟙
|
||||
left : Y→X ∘ X→Y ≡ identity
|
||||
left = Xprop _ _
|
||||
right : X→Y ∘ Y→X ≡ 𝟙
|
||||
right : X→Y ∘ Y→X ≡ identity
|
||||
right = Yprop _ _
|
||||
iso : X ≅ Y
|
||||
iso = X→Y , Y→X , left , right
|
||||
|
@ -321,9 +321,9 @@ record IsCategory {ℓa ℓb : Level} (ℂ : RawCategory ℓa ℓb) : Set (lsuc
|
|||
Xprop f g = trans (sym (snd Xii f)) (snd Xii g)
|
||||
Yprop : isProp (Arrow Y Y)
|
||||
Yprop f g = trans (sym (snd Yii f)) (snd Yii g)
|
||||
left : Y→X ∘ X→Y ≡ 𝟙
|
||||
left : Y→X ∘ X→Y ≡ identity
|
||||
left = Yprop _ _
|
||||
right : X→Y ∘ Y→X ≡ 𝟙
|
||||
right : X→Y ∘ Y→X ≡ identity
|
||||
right = Xprop _ _
|
||||
iso : X ≅ Y
|
||||
iso = Y→X , X→Y , right , left
|
||||
|
@ -351,18 +351,18 @@ module _ {ℓa ℓb : Level} (ℂ : RawCategory ℓa ℓb) where
|
|||
-- adverse effects this may have.
|
||||
module Prop = X.Propositionality
|
||||
|
||||
isIdentity : (λ _ → IsIdentity 𝟙) [ X.isIdentity ≡ Y.isIdentity ]
|
||||
isIdentity : (λ _ → IsIdentity identity) [ X.isIdentity ≡ Y.isIdentity ]
|
||||
isIdentity = Prop.propIsIdentity X.isIdentity Y.isIdentity
|
||||
|
||||
U : ∀ {a : IsIdentity 𝟙}
|
||||
→ (λ _ → IsIdentity 𝟙) [ X.isIdentity ≡ a ]
|
||||
U : ∀ {a : IsIdentity identity}
|
||||
→ (λ _ → IsIdentity identity) [ X.isIdentity ≡ a ]
|
||||
→ (b : Univalent a)
|
||||
→ Set _
|
||||
U eqwal univ =
|
||||
(λ i → Univalent (eqwal i))
|
||||
[ X.univalent ≡ univ ]
|
||||
P : (y : IsIdentity 𝟙)
|
||||
→ (λ _ → IsIdentity 𝟙) [ X.isIdentity ≡ y ] → Set _
|
||||
P : (y : IsIdentity identity)
|
||||
→ (λ _ → IsIdentity identity) [ X.isIdentity ≡ y ] → Set _
|
||||
P y eq = ∀ (univ : Univalent y) → U eq univ
|
||||
p : ∀ (b' : Univalent X.isIdentity)
|
||||
→ (λ _ → Univalent X.isIdentity) [ X.univalent ≡ b' ]
|
||||
|
@ -428,12 +428,12 @@ module Opposite {ℓa ℓb : Level} where
|
|||
opRaw : RawCategory ℓa ℓb
|
||||
RawCategory.Object opRaw = ℂ.Object
|
||||
RawCategory.Arrow opRaw = Function.flip ℂ.Arrow
|
||||
RawCategory.𝟙 opRaw = ℂ.𝟙
|
||||
RawCategory.identity opRaw = ℂ.identity
|
||||
RawCategory._∘_ opRaw = Function.flip ℂ._∘_
|
||||
|
||||
open RawCategory opRaw
|
||||
|
||||
isIdentity : IsIdentity 𝟙
|
||||
isIdentity : IsIdentity identity
|
||||
isIdentity = swap ℂ.isIdentity
|
||||
|
||||
open Univalence isIdentity
|
||||
|
@ -530,7 +530,7 @@ module Opposite {ℓa ℓb : Level} where
|
|||
rawInv : Category.raw (opposite (opposite ℂ)) ≡ raw
|
||||
RawCategory.Object (rawInv _) = Object
|
||||
RawCategory.Arrow (rawInv _) = Arrow
|
||||
RawCategory.𝟙 (rawInv _) = 𝟙
|
||||
RawCategory.identity (rawInv _) = identity
|
||||
RawCategory._∘_ (rawInv _) = _∘_
|
||||
|
||||
oppositeIsInvolution : opposite (opposite ℂ) ≡ ℂ
|
||||
|
|
|
@ -16,11 +16,11 @@ module _ {ℓ ℓ'} (ℂ : Category ℓ ℓ') {{hasProducts : HasProducts ℂ}}
|
|||
field
|
||||
uniq
|
||||
: ∀ (A : Object) (f : ℂ [ A × B , C ])
|
||||
→ ∃![ f~ ] (ℂ [ eval ∘ f~ |×| Category.𝟙 ℂ ] ≡ f)
|
||||
→ ∃![ f~ ] (ℂ [ eval ∘ f~ |×| Category.identity ℂ ] ≡ f)
|
||||
|
||||
IsExponential : (Cᴮ : Object) → ℂ [ Cᴮ × B , C ] → Set (ℓ ⊔ ℓ')
|
||||
IsExponential Cᴮ eval = ∀ (A : Object) (f : ℂ [ A × B , C ])
|
||||
→ ∃![ f~ ] (ℂ [ eval ∘ f~ |×| Category.𝟙 ℂ ] ≡ f)
|
||||
→ ∃![ f~ ] (ℂ [ eval ∘ f~ |×| Category.identity ℂ ] ≡ f)
|
||||
|
||||
record Exponential : Set (ℓ ⊔ ℓ') where
|
||||
field
|
||||
|
|
|
@ -30,7 +30,7 @@ module _ {ℓc ℓc' ℓd ℓd'}
|
|||
fmap : ∀ {A B} → ℂ [ A , B ] → 𝔻 [ omap A , omap B ]
|
||||
|
||||
IsIdentity : Set _
|
||||
IsIdentity = {A : ℂ.Object} → fmap (ℂ.𝟙 {A}) ≡ 𝔻.𝟙 {omap A}
|
||||
IsIdentity = {A : ℂ.Object} → fmap (ℂ.identity {A}) ≡ 𝔻.identity {omap A}
|
||||
|
||||
IsDistributive : Set _
|
||||
IsDistributive = {A B C : ℂ.Object} {f : ℂ [ A , B ]} {g : ℂ [ B , C ]}
|
||||
|
@ -150,10 +150,10 @@ module _ {ℓ0 ℓ1 ℓ2 ℓ3 ℓ4 ℓ5 : Level}
|
|||
isFunctor : IsFunctor A C raw
|
||||
isFunctor = record
|
||||
{ isIdentity = begin
|
||||
(F.fmap ∘ G.fmap) A.𝟙 ≡⟨ refl ⟩
|
||||
F.fmap (G.fmap A.𝟙) ≡⟨ cong F.fmap (G.isIdentity)⟩
|
||||
F.fmap B.𝟙 ≡⟨ F.isIdentity ⟩
|
||||
C.𝟙 ∎
|
||||
(F.fmap ∘ G.fmap) A.identity ≡⟨ refl ⟩
|
||||
F.fmap (G.fmap A.identity) ≡⟨ cong F.fmap (G.isIdentity)⟩
|
||||
F.fmap B.identity ≡⟨ F.isIdentity ⟩
|
||||
C.identity ∎
|
||||
; isDistributive = dist
|
||||
}
|
||||
|
||||
|
|
|
@ -33,10 +33,10 @@ module Kleisli = Cat.Category.Monad.Kleisli
|
|||
|
||||
-- | The monoidal- and kleisli presentation of monads are equivalent.
|
||||
module _ {ℓa ℓb : Level} (ℂ : Category ℓa ℓb) where
|
||||
open Cat.Category.NaturalTransformation ℂ ℂ
|
||||
open Cat.Category.NaturalTransformation ℂ ℂ using (NaturalTransformation ; propIsNatural)
|
||||
private
|
||||
module ℂ = Category ℂ
|
||||
open ℂ using (Object ; Arrow ; 𝟙 ; _∘_ ; _>>>_)
|
||||
open ℂ using (Object ; Arrow ; identity ; _∘_ ; _>>>_)
|
||||
module M = Monoidal ℂ
|
||||
module K = Kleisli ℂ
|
||||
|
||||
|
@ -84,11 +84,11 @@ module _ {ℓa ℓb : Level} (ℂ : Category ℓa ℓb) where
|
|||
inv-l = begin
|
||||
joinT X ∘ pureT (R.omap X) ≡⟨⟩
|
||||
join ∘ pure ≡⟨ proj₁ isInverse ⟩
|
||||
𝟙 ∎
|
||||
identity ∎
|
||||
inv-r = begin
|
||||
joinT X ∘ R.fmap (pureT X) ≡⟨⟩
|
||||
join ∘ fmap pure ≡⟨ proj₂ isInverse ⟩
|
||||
𝟙 ∎
|
||||
identity ∎
|
||||
|
||||
back : K.Monad → M.Monad
|
||||
Monoidal.Monad.raw (back m) = backRaw m
|
||||
|
@ -103,21 +103,21 @@ module _ {ℓa ℓb : Level} (ℂ : Category ℓa ℓb) where
|
|||
bindEq {X} {Y} = begin
|
||||
K.RawMonad.bind (forthRaw (backRaw m)) ≡⟨⟩
|
||||
(λ f → join ∘ fmap f) ≡⟨⟩
|
||||
(λ f → bind (f >>> pure) >>> bind 𝟙) ≡⟨ funExt lem ⟩
|
||||
(λ f → bind (f >>> pure) >>> bind identity) ≡⟨ funExt lem ⟩
|
||||
(λ f → bind f) ≡⟨⟩
|
||||
bind ∎
|
||||
where
|
||||
lem : (f : Arrow X (omap Y))
|
||||
→ bind (f >>> pure) >>> bind 𝟙
|
||||
→ bind (f >>> pure) >>> bind identity
|
||||
≡ bind f
|
||||
lem f = begin
|
||||
bind (f >>> pure) >>> bind 𝟙
|
||||
bind (f >>> pure) >>> bind identity
|
||||
≡⟨ isDistributive _ _ ⟩
|
||||
bind ((f >>> pure) >>> bind 𝟙)
|
||||
bind ((f >>> pure) >>> bind identity)
|
||||
≡⟨ cong bind ℂ.isAssociative ⟩
|
||||
bind (f >>> (pure >>> bind 𝟙))
|
||||
bind (f >>> (pure >>> bind identity))
|
||||
≡⟨ cong (λ φ → bind (f >>> φ)) (isNatural _) ⟩
|
||||
bind (f >>> 𝟙)
|
||||
bind (f >>> identity)
|
||||
≡⟨ cong bind ℂ.leftIdentity ⟩
|
||||
bind f ∎
|
||||
|
||||
|
@ -146,10 +146,10 @@ module _ {ℓa ℓb : Level} (ℂ : Category ℓa ℓb) where
|
|||
joinEq : ∀ {X} → KM.join ≡ joinT X
|
||||
joinEq {X} = begin
|
||||
KM.join ≡⟨⟩
|
||||
KM.bind 𝟙 ≡⟨⟩
|
||||
bind 𝟙 ≡⟨⟩
|
||||
joinT X ∘ Rfmap 𝟙 ≡⟨ cong (λ φ → _ ∘ φ) R.isIdentity ⟩
|
||||
joinT X ∘ 𝟙 ≡⟨ ℂ.rightIdentity ⟩
|
||||
KM.bind identity ≡⟨⟩
|
||||
bind identity ≡⟨⟩
|
||||
joinT X ∘ Rfmap identity ≡⟨ cong (λ φ → _ ∘ φ) R.isIdentity ⟩
|
||||
joinT X ∘ identity ≡⟨ ℂ.rightIdentity ⟩
|
||||
joinT X ∎
|
||||
|
||||
fmapEq : ∀ {A B} → KM.fmap {A} {B} ≡ Rfmap
|
||||
|
@ -161,7 +161,7 @@ module _ {ℓa ℓb : Level} (ℂ : Category ℓa ℓb) where
|
|||
Rfmap (f >>> pureT B) >>> joinT B ≡⟨ cong (λ φ → φ >>> joinT B) R.isDistributive ⟩
|
||||
Rfmap f >>> Rfmap (pureT B) >>> joinT B ≡⟨ ℂ.isAssociative ⟩
|
||||
joinT B ∘ Rfmap (pureT B) ∘ Rfmap f ≡⟨ cong (λ φ → φ ∘ Rfmap f) (proj₂ isInverse) ⟩
|
||||
𝟙 ∘ Rfmap f ≡⟨ ℂ.leftIdentity ⟩
|
||||
identity ∘ Rfmap f ≡⟨ ℂ.leftIdentity ⟩
|
||||
Rfmap f ∎
|
||||
)
|
||||
|
||||
|
@ -183,8 +183,8 @@ module _ {ℓa ℓb : Level} (ℂ : Category ℓa ℓb) where
|
|||
joinTEq = funExt (λ X → begin
|
||||
M.RawMonad.joinT (backRaw (forth m)) X ≡⟨⟩
|
||||
KM.join ≡⟨⟩
|
||||
joinT X ∘ Rfmap 𝟙 ≡⟨ cong (λ φ → joinT X ∘ φ) R.isIdentity ⟩
|
||||
joinT X ∘ 𝟙 ≡⟨ ℂ.rightIdentity ⟩
|
||||
joinT X ∘ Rfmap identity ≡⟨ cong (λ φ → joinT X ∘ φ) R.isIdentity ⟩
|
||||
joinT X ∘ identity ≡⟨ ℂ.rightIdentity ⟩
|
||||
joinT X ∎)
|
||||
|
||||
joinNTEq : (λ i → NaturalTransformation F[ Req i ∘ Req i ] (Req i))
|
||||
|
|
|
@ -12,11 +12,13 @@ open import Cat.Categories.Fun
|
|||
|
||||
-- "A monad in the Kleisli form" [voe]
|
||||
module Cat.Category.Monad.Kleisli {ℓa ℓb : Level} (ℂ : Category ℓa ℓb) where
|
||||
open import Cat.Category.NaturalTransformation ℂ ℂ hiding (propIsNatural)
|
||||
open import Cat.Category.NaturalTransformation ℂ ℂ
|
||||
using (NaturalTransformation ; Transformation ; Natural)
|
||||
|
||||
private
|
||||
ℓ = ℓa ⊔ ℓb
|
||||
module ℂ = Category ℂ
|
||||
open ℂ using (Arrow ; 𝟙 ; Object ; _∘_ ; _>>>_)
|
||||
open ℂ using (Arrow ; identity ; Object ; _∘_ ; _>>>_)
|
||||
|
||||
-- | Data for a monad.
|
||||
--
|
||||
|
@ -40,7 +42,7 @@ record RawMonad : Set ℓ where
|
|||
|
||||
-- | Flattening nested monads.
|
||||
join : {A : Object} → ℂ [ omap (omap A) , omap A ]
|
||||
join = bind 𝟙
|
||||
join = bind identity
|
||||
|
||||
------------------
|
||||
-- * Monad laws --
|
||||
|
@ -49,7 +51,7 @@ record RawMonad : Set ℓ where
|
|||
-- There may be better names than what I've chosen here.
|
||||
|
||||
IsIdentity = {X : Object}
|
||||
→ bind pure ≡ 𝟙 {omap X}
|
||||
→ bind pure ≡ identity {omap X}
|
||||
IsNatural = {X Y : Object} (f : ℂ [ X , omap Y ])
|
||||
→ pure >>> (bind f) ≡ f
|
||||
IsDistributive = {X Y Z : Object} (g : ℂ [ Y , omap Z ]) (f : ℂ [ X , omap Y ])
|
||||
|
@ -67,7 +69,7 @@ record RawMonad : Set ℓ where
|
|||
IsNaturalForeign = {X : Object} → join {X} ∘ fmap join ≡ join ∘ join
|
||||
|
||||
IsInverse : Set _
|
||||
IsInverse = {X : Object} → join {X} ∘ pure ≡ 𝟙 × join {X} ∘ fmap pure ≡ 𝟙
|
||||
IsInverse = {X : Object} → join {X} ∘ pure ≡ identity × join {X} ∘ fmap pure ≡ identity
|
||||
|
||||
record IsMonad (raw : RawMonad) : Set ℓ where
|
||||
open RawMonad raw public
|
||||
|
@ -100,9 +102,9 @@ record IsMonad (raw : RawMonad) : Set ℓ where
|
|||
|
||||
isFunctorR : IsFunctor ℂ ℂ rawR
|
||||
IsFunctor.isIdentity isFunctorR = begin
|
||||
bind (pure ∘ 𝟙) ≡⟨ cong bind (ℂ.rightIdentity) ⟩
|
||||
bind (pure ∘ identity) ≡⟨ cong bind (ℂ.rightIdentity) ⟩
|
||||
bind pure ≡⟨ isIdentity ⟩
|
||||
𝟙 ∎
|
||||
identity ∎
|
||||
|
||||
IsFunctor.isDistributive isFunctorR {f = f} {g} = begin
|
||||
bind (pure ∘ (g ∘ f)) ≡⟨⟩
|
||||
|
@ -137,29 +139,29 @@ record IsMonad (raw : RawMonad) : Set ℓ where
|
|||
joinN : Natural R² R joinT
|
||||
joinN f = begin
|
||||
join ∘ R².fmap f ≡⟨⟩
|
||||
bind 𝟙 ∘ R².fmap f ≡⟨⟩
|
||||
R².fmap f >>> bind 𝟙 ≡⟨⟩
|
||||
fmap (fmap f) >>> bind 𝟙 ≡⟨⟩
|
||||
fmap (bind (f >>> pure)) >>> bind 𝟙 ≡⟨⟩
|
||||
bind (bind (f >>> pure) >>> pure) >>> bind 𝟙
|
||||
bind identity ∘ R².fmap f ≡⟨⟩
|
||||
R².fmap f >>> bind identity ≡⟨⟩
|
||||
fmap (fmap f) >>> bind identity ≡⟨⟩
|
||||
fmap (bind (f >>> pure)) >>> bind identity ≡⟨⟩
|
||||
bind (bind (f >>> pure) >>> pure) >>> bind identity
|
||||
≡⟨ isDistributive _ _ ⟩
|
||||
bind ((bind (f >>> pure) >>> pure) >=> 𝟙)
|
||||
bind ((bind (f >>> pure) >>> pure) >=> identity)
|
||||
≡⟨⟩
|
||||
bind ((bind (f >>> pure) >>> pure) >>> bind 𝟙)
|
||||
bind ((bind (f >>> pure) >>> pure) >>> bind identity)
|
||||
≡⟨ cong bind ℂ.isAssociative ⟩
|
||||
bind (bind (f >>> pure) >>> (pure >>> bind 𝟙))
|
||||
bind (bind (f >>> pure) >>> (pure >>> bind identity))
|
||||
≡⟨ cong (λ φ → bind (bind (f >>> pure) >>> φ)) (isNatural _) ⟩
|
||||
bind (bind (f >>> pure) >>> 𝟙)
|
||||
bind (bind (f >>> pure) >>> identity)
|
||||
≡⟨ cong bind ℂ.leftIdentity ⟩
|
||||
bind (bind (f >>> pure))
|
||||
≡⟨ cong bind (sym ℂ.rightIdentity) ⟩
|
||||
bind (𝟙 >>> bind (f >>> pure)) ≡⟨⟩
|
||||
bind (𝟙 >=> (f >>> pure))
|
||||
bind (identity >>> bind (f >>> pure)) ≡⟨⟩
|
||||
bind (identity >=> (f >>> pure))
|
||||
≡⟨ sym (isDistributive _ _) ⟩
|
||||
bind 𝟙 >>> bind (f >>> pure) ≡⟨⟩
|
||||
bind 𝟙 >>> fmap f ≡⟨⟩
|
||||
bind 𝟙 >>> R.fmap f ≡⟨⟩
|
||||
R.fmap f ∘ bind 𝟙 ≡⟨⟩
|
||||
bind identity >>> bind (f >>> pure) ≡⟨⟩
|
||||
bind identity >>> fmap f ≡⟨⟩
|
||||
bind identity >>> R.fmap f ≡⟨⟩
|
||||
R.fmap f ∘ bind identity ≡⟨⟩
|
||||
R.fmap f ∘ join ∎
|
||||
|
||||
pureNT : NaturalTransformation R⁰ R
|
||||
|
@ -173,20 +175,20 @@ record IsMonad (raw : RawMonad) : Set ℓ where
|
|||
isNaturalForeign : IsNaturalForeign
|
||||
isNaturalForeign = begin
|
||||
fmap join >>> join ≡⟨⟩
|
||||
bind (join >>> pure) >>> bind 𝟙
|
||||
bind (join >>> pure) >>> bind identity
|
||||
≡⟨ isDistributive _ _ ⟩
|
||||
bind ((join >>> pure) >>> bind 𝟙)
|
||||
bind ((join >>> pure) >>> bind identity)
|
||||
≡⟨ cong bind ℂ.isAssociative ⟩
|
||||
bind (join >>> (pure >>> bind 𝟙))
|
||||
bind (join >>> (pure >>> bind identity))
|
||||
≡⟨ cong (λ φ → bind (join >>> φ)) (isNatural _) ⟩
|
||||
bind (join >>> 𝟙)
|
||||
bind (join >>> identity)
|
||||
≡⟨ cong bind ℂ.leftIdentity ⟩
|
||||
bind join ≡⟨⟩
|
||||
bind (bind 𝟙)
|
||||
bind (bind identity)
|
||||
≡⟨ cong bind (sym ℂ.rightIdentity) ⟩
|
||||
bind (𝟙 >>> bind 𝟙) ≡⟨⟩
|
||||
bind (𝟙 >=> 𝟙) ≡⟨ sym (isDistributive _ _) ⟩
|
||||
bind 𝟙 >>> bind 𝟙 ≡⟨⟩
|
||||
bind (identity >>> bind identity) ≡⟨⟩
|
||||
bind (identity >=> identity) ≡⟨ sym (isDistributive _ _) ⟩
|
||||
bind identity >>> bind identity ≡⟨⟩
|
||||
join >>> join ∎
|
||||
|
||||
isInverse : IsInverse
|
||||
|
@ -194,21 +196,21 @@ record IsMonad (raw : RawMonad) : Set ℓ where
|
|||
where
|
||||
inv-l = begin
|
||||
pure >>> join ≡⟨⟩
|
||||
pure >>> bind 𝟙 ≡⟨ isNatural _ ⟩
|
||||
𝟙 ∎
|
||||
pure >>> bind identity ≡⟨ isNatural _ ⟩
|
||||
identity ∎
|
||||
inv-r = begin
|
||||
fmap pure >>> join ≡⟨⟩
|
||||
bind (pure >>> pure) >>> bind 𝟙
|
||||
bind (pure >>> pure) >>> bind identity
|
||||
≡⟨ isDistributive _ _ ⟩
|
||||
bind ((pure >>> pure) >=> 𝟙) ≡⟨⟩
|
||||
bind ((pure >>> pure) >>> bind 𝟙)
|
||||
bind ((pure >>> pure) >=> identity) ≡⟨⟩
|
||||
bind ((pure >>> pure) >>> bind identity)
|
||||
≡⟨ cong bind ℂ.isAssociative ⟩
|
||||
bind (pure >>> (pure >>> bind 𝟙))
|
||||
bind (pure >>> (pure >>> bind identity))
|
||||
≡⟨ cong (λ φ → bind (pure >>> φ)) (isNatural _) ⟩
|
||||
bind (pure >>> 𝟙)
|
||||
bind (pure >>> identity)
|
||||
≡⟨ cong bind ℂ.leftIdentity ⟩
|
||||
bind pure ≡⟨ isIdentity ⟩
|
||||
𝟙 ∎
|
||||
identity ∎
|
||||
|
||||
record Monad : Set ℓ where
|
||||
field
|
||||
|
|
|
@ -16,8 +16,10 @@ module Cat.Category.Monad.Monoidal {ℓa ℓb : Level} (ℂ : Category ℓa ℓb
|
|||
private
|
||||
ℓ = ℓa ⊔ ℓb
|
||||
|
||||
open Category ℂ using (Object ; Arrow ; 𝟙 ; _∘_)
|
||||
open Category ℂ using (Object ; Arrow ; identity ; _∘_)
|
||||
open import Cat.Category.NaturalTransformation ℂ ℂ
|
||||
using (NaturalTransformation ; Transformation ; Natural)
|
||||
|
||||
record RawMonad : Set ℓ where
|
||||
field
|
||||
R : EndoFunctor ℂ
|
||||
|
@ -47,8 +49,8 @@ record RawMonad : Set ℓ where
|
|||
→ joinT X ∘ Rfmap (joinT X) ≡ joinT X ∘ joinT (Romap X)
|
||||
IsInverse : Set _
|
||||
IsInverse = {X : Object}
|
||||
→ joinT X ∘ pureT (Romap X) ≡ 𝟙
|
||||
× joinT X ∘ Rfmap (pureT X) ≡ 𝟙
|
||||
→ joinT X ∘ pureT (Romap X) ≡ identity
|
||||
× joinT X ∘ Rfmap (pureT X) ≡ identity
|
||||
IsNatural = ∀ {X Y} f → joinT Y ∘ Rfmap f ∘ pureT X ≡ f
|
||||
IsDistributive = ∀ {X Y Z} (g : Arrow Y (Romap Z)) (f : Arrow X (Romap Y))
|
||||
→ joinT Z ∘ Rfmap g ∘ (joinT Y ∘ Rfmap f)
|
||||
|
@ -70,7 +72,7 @@ record IsMonad (raw : RawMonad) : Set ℓ where
|
|||
joinT Y ∘ (R.fmap f ∘ pureT X) ≡⟨ cong (λ φ → joinT Y ∘ φ) (sym (pureN f)) ⟩
|
||||
joinT Y ∘ (pureT (R.omap Y) ∘ f) ≡⟨ ℂ.isAssociative ⟩
|
||||
joinT Y ∘ pureT (R.omap Y) ∘ f ≡⟨ cong (λ φ → φ ∘ f) (proj₁ isInverse) ⟩
|
||||
𝟙 ∘ f ≡⟨ ℂ.leftIdentity ⟩
|
||||
identity ∘ f ≡⟨ ℂ.leftIdentity ⟩
|
||||
f ∎
|
||||
|
||||
isDistributive : IsDistributive
|
||||
|
|
|
@ -31,7 +31,7 @@ module Cat.Category.NaturalTransformation
|
|||
{ℓc ℓc' ℓd ℓd' : Level}
|
||||
(ℂ : Category ℓc ℓc') (𝔻 : Category ℓd ℓd') where
|
||||
|
||||
open Category using (Object ; 𝟙)
|
||||
open Category using (Object)
|
||||
private
|
||||
module ℂ = Category ℂ
|
||||
module 𝔻 = Category 𝔻
|
||||
|
@ -63,14 +63,14 @@ module _ (F G : Functor ℂ 𝔻) where
|
|||
NaturalTransformation≡ eq = lemSig propIsNatural _ _ eq
|
||||
|
||||
identityTrans : (F : Functor ℂ 𝔻) → Transformation F F
|
||||
identityTrans F C = 𝟙 𝔻
|
||||
identityTrans F C = 𝔻.identity
|
||||
|
||||
identityNatural : (F : Functor ℂ 𝔻) → Natural F F (identityTrans F)
|
||||
identityNatural F {A = A} {B = B} f = begin
|
||||
𝔻 [ identityTrans F B ∘ F→ f ] ≡⟨⟩
|
||||
𝔻 [ 𝟙 𝔻 ∘ F→ f ] ≡⟨ 𝔻.leftIdentity ⟩
|
||||
𝔻 [ 𝔻.identity ∘ F→ f ] ≡⟨ 𝔻.leftIdentity ⟩
|
||||
F→ f ≡⟨ sym 𝔻.rightIdentity ⟩
|
||||
𝔻 [ F→ f ∘ 𝟙 𝔻 ] ≡⟨⟩
|
||||
𝔻 [ F→ f ∘ 𝔻.identity ] ≡⟨⟩
|
||||
𝔻 [ F→ f ∘ identityTrans F A ] ∎
|
||||
where
|
||||
module F = Functor F
|
||||
|
|
|
@ -134,7 +134,7 @@ module Try0 {ℓa ℓb : Level} {ℂ : Category ℓa ℓb}
|
|||
( ℂ [ ya ∘ xy ] ≡ xa)
|
||||
× ℂ [ yb ∘ xy ] ≡ xb
|
||||
}
|
||||
; 𝟙 = λ{ {A , f , g} → ℂ.𝟙 {A} , ℂ.rightIdentity , ℂ.rightIdentity}
|
||||
; identity = λ{ {A , f , g} → ℂ.identity {A} , ℂ.rightIdentity , ℂ.rightIdentity}
|
||||
; _∘_ = λ { {A , a0 , a1} {B , b0 , b1} {C , c0 , c1} (f , f0 , f1) (g , g0 , g1)
|
||||
→ (f ℂ.∘ g)
|
||||
, (begin
|
||||
|
@ -169,24 +169,24 @@ module Try0 {ℓa ℓb : Level} {ℂ : Category ℓa ℓb}
|
|||
s0 = ℂ.isAssociative {f = f} {g} {h}
|
||||
|
||||
|
||||
isIdentity : IsIdentity 𝟙
|
||||
isIdentity : IsIdentity identity
|
||||
isIdentity {AA@(A , a0 , a1)} {BB@(B , b0 , b1)} {f , f0 , f1} = leftIdentity , rightIdentity
|
||||
where
|
||||
leftIdentity : 𝟙 ∘ (f , f0 , f1) ≡ (f , f0 , f1)
|
||||
leftIdentity : identity ∘ (f , f0 , f1) ≡ (f , f0 , f1)
|
||||
leftIdentity i = l i , lemPropF propEqs l {proj₂ L} {proj₂ R} i
|
||||
where
|
||||
L = 𝟙 ∘ (f , f0 , f1)
|
||||
L = identity ∘ (f , f0 , f1)
|
||||
R : Arrow AA BB
|
||||
R = f , f0 , f1
|
||||
l : proj₁ L ≡ proj₁ R
|
||||
l = ℂ.leftIdentity
|
||||
rightIdentity : (f , f0 , f1) ∘ 𝟙 ≡ (f , f0 , f1)
|
||||
rightIdentity : (f , f0 , f1) ∘ identity ≡ (f , f0 , f1)
|
||||
rightIdentity i = l i , lemPropF propEqs l {proj₂ L} {proj₂ R} i
|
||||
where
|
||||
L = (f , f0 , f1) ∘ 𝟙
|
||||
L = (f , f0 , f1) ∘ identity
|
||||
R : Arrow AA BB
|
||||
R = (f , f0 , f1)
|
||||
l : ℂ [ f ∘ ℂ.𝟙 ] ≡ f
|
||||
l : ℂ [ f ∘ ℂ.identity ] ≡ f
|
||||
l = ℂ.rightIdentity
|
||||
|
||||
arrowsAreSets : ArrowsAreSets
|
||||
|
|
|
@ -52,7 +52,7 @@ module _ {ℓ : Level} {ℂ : Category ℓ ℓ} where
|
|||
isIdentity : IsIdentity
|
||||
isIdentity {c} = lemSig prp _ _ eq
|
||||
where
|
||||
eq : (λ C x → ℂ [ ℂ.𝟙 ∘ x ]) ≡ identityTrans (presheaf c)
|
||||
eq : (λ C x → ℂ [ ℂ.identity ∘ x ]) ≡ identityTrans (presheaf c)
|
||||
eq = funExt λ A → funExt λ B → ℂ.leftIdentity
|
||||
prp = F.naturalIsProp _ _ {F = presheaf c} {presheaf c}
|
||||
|
||||
|
|
Loading…
Reference in a new issue