[WIP] Arrows are sets in special product category
This commit is contained in:
parent
467c5d9c0c
commit
1e5fb7d50a
|
@ -160,27 +160,31 @@ module Try0 {ℓa ℓb : Level} {ℂ : Category ℓa ℓb}
|
|||
l = ℂ.rightIdentity
|
||||
|
||||
arrowsAreSets : ArrowsAreSets
|
||||
arrowsAreSets {X , x0 , x1} {Y , y0 , y1} (f , f0 , f1) (g , g0 , g1) p q = {!!}
|
||||
arrowsAreSets {X , x0 , x1} {Y , y0 , y1} (f , f0 , f1) (g , g0 , g1) p q = pq
|
||||
where
|
||||
prop : ∀ {X Y} (x y : ℂ.Arrow X Y) → isProp (x ≡ y)
|
||||
prop = ℂ.arrowsAreSets
|
||||
-- prop : ∀ {X Y} (x y : ℂ.Arrow X Y) → isProp (x ≡ y)
|
||||
-- prop = ℂ.arrowsAreSets
|
||||
a0 a1 : f ≡ g
|
||||
a0 i = proj₁ (p i)
|
||||
a1 i = proj₁ (q i)
|
||||
a : a0 ≡ a1
|
||||
a = ℂ.arrowsAreSets _ _ a0 a1
|
||||
res : p ≡ q
|
||||
res i j = a i j , {!b i j!} , {!!}
|
||||
where
|
||||
-- b0 b1 : (λ j → (ℂ [ y0 ∘ a i j ]) ≡ x0) [ f0 ≡ g0 ]
|
||||
-- b0 = lemPropF (λ x → prop (ℂ [ y0 ∘ x ]) x0) (a i)
|
||||
-- b1 = lemPropF (λ x → prop (ℂ [ y0 ∘ x ]) x0) (a i)
|
||||
b0 : (λ j → (ℂ [ y0 ∘ a0 j ]) ≡ x0) [ f0 ≡ g0 ]
|
||||
b0 = lemPropF (λ x → prop (ℂ [ y0 ∘ x ]) x0) a0
|
||||
b1 : (λ j → (ℂ [ y0 ∘ a1 j ]) ≡ x0) [ f0 ≡ g0 ]
|
||||
b1 = lemPropF (λ x → prop (ℂ [ y0 ∘ x ]) x0) a1
|
||||
-- b : b0 ≡ b1
|
||||
-- b = {!!}
|
||||
module _ (i : I) where
|
||||
r : f ≡ g
|
||||
r = a i
|
||||
module _ (j : I) where
|
||||
prop0 : isProp (ℂ [ y0 ∘ r j ] ≡ x0)
|
||||
prop0 = ℂ.arrowsAreSets _ _
|
||||
prop1 : isProp (ℂ [ y1 ∘ r j ] ≡ x1)
|
||||
prop1 = ℂ.arrowsAreSets _ _
|
||||
prop : isProp (ℂ [ y0 ∘ r j ] ≡ x0 × ℂ [ y1 ∘ r j ] ≡ x1)
|
||||
prop = propSig prop0 (λ _ → prop1)
|
||||
helper : (b0 b1 : (ℂ [ y0 ∘ r j ]) ≡ x0 × (ℂ [ y1 ∘ r j ]) ≡ x1) → b0 ≡ b1
|
||||
helper _ _ = lemPropF (λ _ → prop) p
|
||||
b : (ℂ [ y0 ∘ r j ]) ≡ x0 × (ℂ [ y1 ∘ r j ]) ≡ x1
|
||||
b = {!!}
|
||||
pq : p ≡ q
|
||||
pq i j = a i j , b i j
|
||||
|
||||
open Univalence isIdentity
|
||||
|
||||
|
|
Loading…
Reference in a new issue