[WIP] Arrows are sets in special product category

This commit is contained in:
Frederik Hanghøj Iversen 2018-04-03 14:46:36 +02:00
parent 467c5d9c0c
commit 1e5fb7d50a

View file

@ -160,27 +160,31 @@ module Try0 {a b : Level} { : Category a b}
l = .rightIdentity
arrowsAreSets : ArrowsAreSets
arrowsAreSets {X , x0 , x1} {Y , y0 , y1} (f , f0 , f1) (g , g0 , g1) p q = {!!}
arrowsAreSets {X , x0 , x1} {Y , y0 , y1} (f , f0 , f1) (g , g0 , g1) p q = pq
where
prop : {X Y} (x y : .Arrow X Y) isProp (x y)
prop = .arrowsAreSets
-- prop : ∀ {X Y} (x y : .Arrow X Y) → isProp (x ≡ y)
-- prop = .arrowsAreSets
a0 a1 : f g
a0 i = proj₁ (p i)
a1 i = proj₁ (q i)
a : a0 a1
a = .arrowsAreSets _ _ a0 a1
res : p q
res i j = a i j , {!b i j!} , {!!}
where
-- b0 b1 : (λ j → ( [ y0 ∘ a i j ]) ≡ x0) [ f0 ≡ g0 ]
-- b0 = lemPropF (λ x → prop ( [ y0 ∘ x ]) x0) (a i)
-- b1 = lemPropF (λ x → prop ( [ y0 ∘ x ]) x0) (a i)
b0 : (λ j ( [ y0 a0 j ]) x0) [ f0 g0 ]
b0 = lemPropF (λ x prop ( [ y0 x ]) x0) a0
b1 : (λ j ( [ y0 a1 j ]) x0) [ f0 g0 ]
b1 = lemPropF (λ x prop ( [ y0 x ]) x0) a1
-- b : b0 ≡ b1
-- b = {!!}
module _ (i : I) where
r : f g
r = a i
module _ (j : I) where
prop0 : isProp ( [ y0 r j ] x0)
prop0 = .arrowsAreSets _ _
prop1 : isProp ( [ y1 r j ] x1)
prop1 = .arrowsAreSets _ _
prop : isProp ( [ y0 r j ] x0 × [ y1 r j ] x1)
prop = propSig prop0 (λ _ prop1)
helper : (b0 b1 : ( [ y0 r j ]) x0 × ( [ y1 r j ]) x1) b0 b1
helper _ _ = lemPropF (λ _ prop) p
b : ( [ y0 r j ]) x0 × ( [ y1 r j ]) x1
b = {!!}
pq : p q
pq i j = a i j , b i j
open Univalence isIdentity