[WIP] Arrows are sets in special product category
This commit is contained in:
parent
467c5d9c0c
commit
1e5fb7d50a
|
@ -160,27 +160,31 @@ module Try0 {ℓa ℓb : Level} {ℂ : Category ℓa ℓb}
|
||||||
l = ℂ.rightIdentity
|
l = ℂ.rightIdentity
|
||||||
|
|
||||||
arrowsAreSets : ArrowsAreSets
|
arrowsAreSets : ArrowsAreSets
|
||||||
arrowsAreSets {X , x0 , x1} {Y , y0 , y1} (f , f0 , f1) (g , g0 , g1) p q = {!!}
|
arrowsAreSets {X , x0 , x1} {Y , y0 , y1} (f , f0 , f1) (g , g0 , g1) p q = pq
|
||||||
where
|
where
|
||||||
prop : ∀ {X Y} (x y : ℂ.Arrow X Y) → isProp (x ≡ y)
|
-- prop : ∀ {X Y} (x y : ℂ.Arrow X Y) → isProp (x ≡ y)
|
||||||
prop = ℂ.arrowsAreSets
|
-- prop = ℂ.arrowsAreSets
|
||||||
a0 a1 : f ≡ g
|
a0 a1 : f ≡ g
|
||||||
a0 i = proj₁ (p i)
|
a0 i = proj₁ (p i)
|
||||||
a1 i = proj₁ (q i)
|
a1 i = proj₁ (q i)
|
||||||
a : a0 ≡ a1
|
a : a0 ≡ a1
|
||||||
a = ℂ.arrowsAreSets _ _ a0 a1
|
a = ℂ.arrowsAreSets _ _ a0 a1
|
||||||
res : p ≡ q
|
module _ (i : I) where
|
||||||
res i j = a i j , {!b i j!} , {!!}
|
r : f ≡ g
|
||||||
where
|
r = a i
|
||||||
-- b0 b1 : (λ j → (ℂ [ y0 ∘ a i j ]) ≡ x0) [ f0 ≡ g0 ]
|
module _ (j : I) where
|
||||||
-- b0 = lemPropF (λ x → prop (ℂ [ y0 ∘ x ]) x0) (a i)
|
prop0 : isProp (ℂ [ y0 ∘ r j ] ≡ x0)
|
||||||
-- b1 = lemPropF (λ x → prop (ℂ [ y0 ∘ x ]) x0) (a i)
|
prop0 = ℂ.arrowsAreSets _ _
|
||||||
b0 : (λ j → (ℂ [ y0 ∘ a0 j ]) ≡ x0) [ f0 ≡ g0 ]
|
prop1 : isProp (ℂ [ y1 ∘ r j ] ≡ x1)
|
||||||
b0 = lemPropF (λ x → prop (ℂ [ y0 ∘ x ]) x0) a0
|
prop1 = ℂ.arrowsAreSets _ _
|
||||||
b1 : (λ j → (ℂ [ y0 ∘ a1 j ]) ≡ x0) [ f0 ≡ g0 ]
|
prop : isProp (ℂ [ y0 ∘ r j ] ≡ x0 × ℂ [ y1 ∘ r j ] ≡ x1)
|
||||||
b1 = lemPropF (λ x → prop (ℂ [ y0 ∘ x ]) x0) a1
|
prop = propSig prop0 (λ _ → prop1)
|
||||||
-- b : b0 ≡ b1
|
helper : (b0 b1 : (ℂ [ y0 ∘ r j ]) ≡ x0 × (ℂ [ y1 ∘ r j ]) ≡ x1) → b0 ≡ b1
|
||||||
-- b = {!!}
|
helper _ _ = lemPropF (λ _ → prop) p
|
||||||
|
b : (ℂ [ y0 ∘ r j ]) ≡ x0 × (ℂ [ y1 ∘ r j ]) ≡ x1
|
||||||
|
b = {!!}
|
||||||
|
pq : p ≡ q
|
||||||
|
pq i j = a i j , b i j
|
||||||
|
|
||||||
open Univalence isIdentity
|
open Univalence isIdentity
|
||||||
|
|
||||||
|
|
Loading…
Reference in a new issue