Prove identity law for coercions.
This commit is contained in:
parent
30725d71b6
commit
2188e690a0
|
@ -28,21 +28,12 @@ sym≃ = Equivalence.symmetry
|
|||
infixl 10 _⊙_
|
||||
|
||||
module _ {ℓ : Level} {A : Set ℓ} {a : A} where
|
||||
-- "This follows from the propositional equiality for `J`" - Vezzosi.
|
||||
id-coe : coe refl a ≡ a
|
||||
id-coe = begin
|
||||
coe refl a ≡⟨⟩
|
||||
-- pathJprop : pathJ _ refl ≡ d
|
||||
pathJ (λ y x → A) scary A refl ≡⟨ pathJprop {x = scary} (λ y x → A) scary ⟩
|
||||
scary ≡⟨ {!!} ⟩
|
||||
-- pathJ (λ y x → A) scary A refl ≡⟨ pathJprop {A = A} (λ y x → A) scary ⟩
|
||||
-- scary ≡⟨ {!!} ⟩
|
||||
|
||||
-- pathJ (λ y _ → B _ → B y) (λ x → x) _ p ≡⟨ {!!} ⟩
|
||||
pathJ (λ y x → A) _ A refl ≡⟨ pathJprop {x = a} (λ y x → A) _ ⟩
|
||||
_ ≡⟨ pathJprop {x = a} (λ y x → A) _ ⟩
|
||||
a ∎
|
||||
where
|
||||
scary : A
|
||||
scary = (primComp (λ j → A) i0 (λ j → p[ a ] i0 (~ j)) a)
|
||||
|
||||
module _ {ℓ : Level} {A B : Set ℓ} {a : A} where
|
||||
inv-coe : (p : A ≡ B) → coe (sym p) (coe p a) ≡ a
|
||||
|
|
Loading…
Reference in a new issue