Rename the category of categories
This commit is contained in:
parent
b21c9b7a89
commit
26d210dcc3
|
@ -63,8 +63,8 @@ module _ {ℓ ℓ' : Level} where
|
||||||
postulate ident-l : identity ∘f f ≡ f
|
postulate ident-l : identity ∘f f ≡ f
|
||||||
-- ident-l = lift-eq-functors lem lemmm {!refl!} {!!}
|
-- ident-l = lift-eq-functors lem lemmm {!refl!} {!!}
|
||||||
|
|
||||||
CatCat : Category (lsuc (ℓ ⊔ ℓ')) (ℓ ⊔ ℓ')
|
Cat : Category (lsuc (ℓ ⊔ ℓ')) (ℓ ⊔ ℓ')
|
||||||
CatCat =
|
Cat =
|
||||||
record
|
record
|
||||||
{ Object = Category ℓ ℓ'
|
{ Object = Category ℓ ℓ'
|
||||||
; Arrow = Functor
|
; Arrow = Functor
|
||||||
|
@ -110,13 +110,13 @@ module _ {ℓ : Level} (C D : Category ℓ ℓ) where
|
||||||
; _⊕_ = _:⊕:_
|
; _⊕_ = _:⊕:_
|
||||||
}
|
}
|
||||||
|
|
||||||
proj₁ : Arrow CatCat :product: C
|
proj₁ : Arrow Cat :product: C
|
||||||
proj₁ = record { func* = fst ; func→ = fst ; ident = refl ; distrib = refl }
|
proj₁ = record { func* = fst ; func→ = fst ; ident = refl ; distrib = refl }
|
||||||
|
|
||||||
proj₂ : Arrow CatCat :product: D
|
proj₂ : Arrow Cat :product: D
|
||||||
proj₂ = record { func* = snd ; func→ = snd ; ident = refl ; distrib = refl }
|
proj₂ = record { func* = snd ; func→ = snd ; ident = refl ; distrib = refl }
|
||||||
|
|
||||||
module _ {X : Object (CatCat {ℓ} {ℓ})} (x₁ : Arrow CatCat X C) (x₂ : Arrow CatCat X D) where
|
module _ {X : Object (Cat {ℓ} {ℓ})} (x₁ : Arrow Cat X C) (x₂ : Arrow Cat X D) where
|
||||||
open Functor
|
open Functor
|
||||||
|
|
||||||
-- ident' : {c : Object X} → ((func→ x₁) {dom = c} (𝟙 X) , (func→ x₂) {dom = c} (𝟙 X)) ≡ 𝟙 (catProduct C D)
|
-- ident' : {c : Object X} → ((func→ x₁) {dom = c} (𝟙 X) , (func→ x₂) {dom = c} (𝟙 X)) ≡ 𝟙 (catProduct C D)
|
||||||
|
@ -132,23 +132,23 @@ module _ {ℓ : Level} (C D : Category ℓ ℓ) where
|
||||||
|
|
||||||
-- Need to "lift equality of functors"
|
-- Need to "lift equality of functors"
|
||||||
-- If I want to do this like I do it for pairs it's gonna be a pain.
|
-- If I want to do this like I do it for pairs it's gonna be a pain.
|
||||||
isUniqL : (CatCat ⊕ proj₁) x ≡ x₁
|
isUniqL : (Cat ⊕ proj₁) x ≡ x₁
|
||||||
isUniqL = lift-eq-functors refl refl {!!} {!!}
|
isUniqL = lift-eq-functors refl refl {!!} {!!}
|
||||||
|
|
||||||
isUniqR : (CatCat ⊕ proj₂) x ≡ x₂
|
isUniqR : (Cat ⊕ proj₂) x ≡ x₂
|
||||||
isUniqR = lift-eq-functors refl refl {!!} {!!}
|
isUniqR = lift-eq-functors refl refl {!!} {!!}
|
||||||
|
|
||||||
isUniq : (CatCat ⊕ proj₁) x ≡ x₁ × (CatCat ⊕ proj₂) x ≡ x₂
|
isUniq : (Cat ⊕ proj₁) x ≡ x₁ × (Cat ⊕ proj₂) x ≡ x₂
|
||||||
isUniq = isUniqL , isUniqR
|
isUniq = isUniqL , isUniqR
|
||||||
|
|
||||||
uniq : ∃![ x ] ((CatCat ⊕ proj₁) x ≡ x₁ × (CatCat ⊕ proj₂) x ≡ x₂)
|
uniq : ∃![ x ] ((Cat ⊕ proj₁) x ≡ x₁ × (Cat ⊕ proj₂) x ≡ x₂)
|
||||||
uniq = x , isUniq
|
uniq = x , isUniq
|
||||||
|
|
||||||
instance
|
instance
|
||||||
isProduct : IsProduct CatCat proj₁ proj₂
|
isProduct : IsProduct Cat proj₁ proj₂
|
||||||
isProduct = uniq
|
isProduct = uniq
|
||||||
|
|
||||||
product : Product {ℂ = CatCat} C D
|
product : Product {ℂ = Cat} C D
|
||||||
product = record
|
product = record
|
||||||
{ obj = :product:
|
{ obj = :product:
|
||||||
; proj₁ = proj₁
|
; proj₁ = proj₁
|
||||||
|
|
Loading…
Reference in a new issue