Equality principle for isomorphisms
This commit is contained in:
parent
545fb0ade6
commit
29c4c4a3b9
|
@ -222,9 +222,9 @@ module _ {ℓa ℓb : Level} (ℂ : RawCategory ℓa ℓb) where
|
||||||
propIsInverseOf : ∀ {A B f g} → isProp (IsInverseOf {A} {B} f g)
|
propIsInverseOf : ∀ {A B f g} → isProp (IsInverseOf {A} {B} f g)
|
||||||
propIsInverseOf = propSig (arrowsAreSets _ _) (λ _ → arrowsAreSets _ _)
|
propIsInverseOf = propSig (arrowsAreSets _ _) (λ _ → arrowsAreSets _ _)
|
||||||
|
|
||||||
module _ {A B : Object} (f : Arrow A B) where
|
module _ {A B : Object} where
|
||||||
propIsomorphism : isProp (Isomorphism f)
|
propIsomorphism : (f : Arrow A B) → isProp (Isomorphism f)
|
||||||
propIsomorphism a@(g , η , ε) a'@(g' , η' , ε') =
|
propIsomorphism f a@(g , η , ε) a'@(g' , η' , ε') =
|
||||||
lemSig (λ g → propIsInverseOf) a a' geq
|
lemSig (λ g → propIsInverseOf) a a' geq
|
||||||
where
|
where
|
||||||
geq : g ≡ g'
|
geq : g ≡ g'
|
||||||
|
@ -236,6 +236,9 @@ module _ {ℓa ℓb : Level} (ℂ : RawCategory ℓa ℓb) where
|
||||||
identity <<< g' ≡⟨ leftIdentity ⟩
|
identity <<< g' ≡⟨ leftIdentity ⟩
|
||||||
g' ∎
|
g' ∎
|
||||||
|
|
||||||
|
isoEq : {a b : A ≊ B} → fst a ≡ fst b → a ≡ b
|
||||||
|
isoEq = lemSig propIsomorphism _ _
|
||||||
|
|
||||||
propIsInitial : ∀ I → isProp (IsInitial I)
|
propIsInitial : ∀ I → isProp (IsInitial I)
|
||||||
propIsInitial I x y i {X} = res X i
|
propIsInitial I x y i {X} = res X i
|
||||||
where
|
where
|
||||||
|
@ -673,16 +676,7 @@ module Opposite {ℓa ℓb : Level} where
|
||||||
-- Shouldn't be necessary to use `arrowsAreSets` here, but we have it,
|
-- Shouldn't be necessary to use `arrowsAreSets` here, but we have it,
|
||||||
-- so why not?
|
-- so why not?
|
||||||
lem : (p : A ≡ B) → idToIso A B p ≡ shuffle~ (ℂ.idToIso A B p)
|
lem : (p : A ≡ B) → idToIso A B p ≡ shuffle~ (ℂ.idToIso A B p)
|
||||||
lem p = Σ≡ refl (Σ≡ refl (Σ≡ (ℂ.arrowsAreSets _ _ l-l r-l) (ℂ.arrowsAreSets _ _ l-r r-r)))
|
lem p = isoEq refl
|
||||||
where
|
|
||||||
l = idToIso A B p
|
|
||||||
r = shuffle~ (ℂ.idToIso A B p)
|
|
||||||
open Σ l renaming (fst to l-obv ; snd to l-areInv)
|
|
||||||
open Σ l-areInv renaming (fst to l-invs ; snd to l-iso)
|
|
||||||
open Σ l-iso renaming (fst to l-l ; snd to l-r)
|
|
||||||
open Σ r renaming (fst to r-obv ; snd to r-areInv)
|
|
||||||
open Σ r-areInv renaming (fst to r-invs ; snd to r-iso)
|
|
||||||
open Σ r-iso renaming (fst to r-l ; snd to r-r)
|
|
||||||
|
|
||||||
ζ : A ≊ B → A ≡ B
|
ζ : A ≊ B → A ≡ B
|
||||||
ζ = η ∘ shuffle
|
ζ = η ∘ shuffle
|
||||||
|
|
Loading…
Reference in a new issue