Delete equality module

This commit is contained in:
Frederik Hanghøj Iversen 2018-03-21 14:47:01 +01:00
parent 183906dc8c
commit 29f45d1426
6 changed files with 13 additions and 45 deletions

View file

@ -5,9 +5,6 @@ module Cat.Categories.Cat where
open import Cat.Prelude renaming (proj₁ to fst ; proj₂ to snd) open import Cat.Prelude renaming (proj₁ to fst ; proj₂ to snd)
open import Cubical
open import Cubical.Sigma
open import Cat.Category open import Cat.Category
open import Cat.Category.Functor open import Cat.Category.Functor
open import Cat.Category.Product open import Cat.Category.Product
@ -15,9 +12,6 @@ open import Cat.Category.Exponential hiding (_×_ ; product)
open import Cat.Category.NaturalTransformation open import Cat.Category.NaturalTransformation
open import Cat.Categories.Fun open import Cat.Categories.Fun
open import Cat.Equality
open Equality.Data.Product
-- The category of categories -- The category of categories
module _ ( ' : Level) where module _ ( ' : Level) where
private private

View file

@ -1,21 +1,18 @@
{-# OPTIONS --allow-unsolved-metas #-} {-# OPTIONS --allow-unsolved-metas #-}
module Cat.Categories.Cube where module Cat.Categories.Cube where
open import Cat.Prelude
open import Level open import Level
open import Data.Bool hiding (T) open import Data.Bool hiding (T)
open import Data.Sum hiding ([_,_]) open import Data.Sum hiding ([_,_])
open import Data.Unit open import Data.Unit
open import Data.Empty open import Data.Empty
open import Data.Product
open import Cubical
open import Function open import Function
open import Relation.Nullary open import Relation.Nullary
open import Relation.Nullary.Decidable open import Relation.Nullary.Decidable
open import Cat.Category open import Cat.Category
open import Cat.Category.Functor open import Cat.Category.Functor
open import Cat.Equality
open Equality.Data.Product
-- See chapter 1 for a discussion on how presheaf categories are CwF's. -- See chapter 1 for a discussion on how presheaf categories are CwF's.

View file

@ -1,17 +1,10 @@
{-# OPTIONS --allow-unsolved-metas #-} {-# OPTIONS --allow-unsolved-metas #-}
module Cat.Categories.Fam where module Cat.Categories.Fam where
open import Agda.Primitive open import Cat.Prelude
open import Data.Product
import Function import Function
open import Cubical
open import Cubical.Universe
open import Cat.Category open import Cat.Category
open import Cat.Equality
open Equality.Data.Product
module _ (a b : Level) where module _ (a b : Level) where
private private

View file

@ -2,14 +2,10 @@
module Cat.Category.Yoneda where module Cat.Category.Yoneda where
open import Agda.Primitive open import Cat.Prelude
open import Data.Product
open import Cubical
open import Cubical.NType.Properties
open import Cat.Category open import Cat.Category
open import Cat.Category.Functor open import Cat.Category.Functor
open import Cat.Equality
open import Cat.Categories.Fun open import Cat.Categories.Fun
open import Cat.Categories.Sets hiding (presheaf) open import Cat.Categories.Sets hiding (presheaf)

View file

@ -1,22 +0,0 @@
{-# OPTIONS --cubical #-}
-- Defines equality-principles for data-types from the standard library.
module Cat.Equality where
open import Level
open import Cubical
-- _[_≡_] = PathP
module Equality where
module Data where
module Product where
open import Data.Product
module _ {a b : Level} {A : Set a} {B : A Set b} {a b : Σ A B}
(proj₁≡ : (λ _ A) [ proj₁ a proj₁ b ])
(proj₂≡ : (λ i B (proj₁≡ i)) [ proj₂ a proj₂ b ]) where
Σ≡ : a b
proj₁ (Σ≡ i) = proj₁≡ i
proj₂ (Σ≡ i) = proj₂≡ i

View file

@ -24,6 +24,8 @@ open import Cubical.NType.Properties
( lemPropF ; lemSig ; lemSigP ; isSetIsProp ( lemPropF ; lemSig ; lemSigP ; isSetIsProp
; propPi ; propHasLevel ; setPi ; propSet) ; propPi ; propHasLevel ; setPi ; propSet)
public public
open import Cubical.Sigma using (setSig) public
open import Cubical.Universe using (hSet) public
----------------- -----------------
-- * Utilities -- -- * Utilities --
@ -38,3 +40,11 @@ open import Cubical.NType.Properties
∃!-syntax = ∃!-syntax =
syntax ∃!-syntax (λ x B) = ∃![ x ] B syntax ∃!-syntax (λ x B) = ∃![ x ] B
module _ {a b : Level} {A : Set a} {B : A Set b} {a b : Σ A B}
(proj₁≡ : (λ _ A) [ proj₁ a proj₁ b ])
(proj₂≡ : (λ i B (proj₁≡ i)) [ proj₂ a proj₂ b ]) where
Σ≡ : a b
proj₁ (Σ≡ i) = proj₁≡ i
proj₂ (Σ≡ i) = proj₂≡ i