Prettier names in Fun
This commit is contained in:
parent
bb379fa196
commit
2b92cee254
|
@ -45,9 +45,9 @@ module Fun {ℓc ℓc' ℓd ℓd' : Level} (ℂ : Category ℓc ℓc') (𝔻 : C
|
||||||
(s≤s {n = Nat.suc Nat.zero} z≤n)
|
(s≤s {n = Nat.suc Nat.zero} z≤n)
|
||||||
(naturalIsProp θ)
|
(naturalIsProp θ)
|
||||||
|
|
||||||
module _ {A B C D : Functor ℂ 𝔻} {θ' : NaturalTransformation A B}
|
private
|
||||||
{η' : NaturalTransformation B C} {ζ' : NaturalTransformation C D} where
|
module _ {A B C D : Functor ℂ 𝔻} {θ' : NaturalTransformation A B}
|
||||||
private
|
{η' : NaturalTransformation B C} {ζ' : NaturalTransformation C D} where
|
||||||
θ = proj₁ θ'
|
θ = proj₁ θ'
|
||||||
η = proj₁ η'
|
η = proj₁ η'
|
||||||
ζ = proj₁ ζ'
|
ζ = proj₁ ζ'
|
||||||
|
@ -58,11 +58,11 @@ module Fun {ℓc ℓc' ℓd ℓd' : Level} (ℂ : Category ℓc ℓc') (𝔻 : C
|
||||||
L = (NT[_∘_] {A} {C} {D} ζ' (NT[_∘_] {A} {B} {C} η' θ'))
|
L = (NT[_∘_] {A} {C} {D} ζ' (NT[_∘_] {A} {B} {C} η' θ'))
|
||||||
R : NaturalTransformation A D
|
R : NaturalTransformation A D
|
||||||
R = (NT[_∘_] {A} {B} {D} (NT[_∘_] {B} {C} {D} ζ' η') θ')
|
R = (NT[_∘_] {A} {B} {D} (NT[_∘_] {B} {C} {D} ζ' η') θ')
|
||||||
_g⊕f_ = NT[_∘_] {A} {B} {C}
|
_g⊕f_ = NT[_∘_] {A} {B} {C}
|
||||||
_h⊕g_ = NT[_∘_] {B} {C} {D}
|
_h⊕g_ = NT[_∘_] {B} {C} {D}
|
||||||
:isAssociative: : L ≡ R
|
isAssociative : L ≡ R
|
||||||
:isAssociative: = lemSig (naturalIsProp {F = A} {D})
|
isAssociative = lemSig (naturalIsProp {F = A} {D})
|
||||||
L R (funExt (λ x → 𝔻.isAssociative))
|
L R (funExt (λ x → 𝔻.isAssociative))
|
||||||
|
|
||||||
private
|
private
|
||||||
module _ {A B : Functor ℂ 𝔻} {f : NaturalTransformation A B} where
|
module _ {A B : Functor ℂ 𝔻} {f : NaturalTransformation A B} where
|
||||||
|
@ -93,9 +93,9 @@ module Fun {ℓc ℓc' ℓd ℓd' : Level} (ℂ : Category ℓc ℓc') (𝔻 : C
|
||||||
}
|
}
|
||||||
|
|
||||||
instance
|
instance
|
||||||
:isCategory: : IsCategory RawFun
|
isCategory : IsCategory RawFun
|
||||||
:isCategory: = record
|
isCategory = record
|
||||||
{ isAssociative = λ {A B C D} → :isAssociative: {A} {B} {C} {D}
|
{ isAssociative = λ {A B C D} → isAssociative {A} {B} {C} {D}
|
||||||
; isIdentity = λ {A B} → isIdentity {A} {B}
|
; isIdentity = λ {A B} → isIdentity {A} {B}
|
||||||
; arrowsAreSets = λ {F} {G} → naturalTransformationIsSets {F} {G}
|
; arrowsAreSets = λ {F} {G} → naturalTransformationIsSets {F} {G}
|
||||||
; univalent = {!!}
|
; univalent = {!!}
|
||||||
|
@ -119,7 +119,7 @@ module _ {ℓ ℓ' : Level} (ℂ : Category ℓ ℓ') where
|
||||||
}
|
}
|
||||||
instance
|
instance
|
||||||
isCategory : IsCategory rawPresh
|
isCategory : IsCategory rawPresh
|
||||||
isCategory = Fun.:isCategory: _ _
|
isCategory = Fun.isCategory _ _
|
||||||
|
|
||||||
Presh : Category (ℓ ⊔ lsuc ℓ') (ℓ ⊔ ℓ')
|
Presh : Category (ℓ ⊔ lsuc ℓ') (ℓ ⊔ ℓ')
|
||||||
Category.raw Presh = rawPresh
|
Category.raw Presh = rawPresh
|
||||||
|
|
Loading…
Reference in a new issue