Remove Pathy
and Bij
This commit is contained in:
parent
5caecf9796
commit
2c6132768e
|
@ -7,8 +7,6 @@ import Cat.Category.Product
|
|||
import Cat.Category.Exponential
|
||||
import Cat.Category.CartesianClosed
|
||||
import Cat.Category.NaturalTransformation
|
||||
import Cat.Category.Pathy
|
||||
import Cat.Category.Bij
|
||||
import Cat.Category.Yoneda
|
||||
import Cat.Category.Monad
|
||||
|
||||
|
|
|
@ -1,46 +0,0 @@
|
|||
{-# OPTIONS --cubical --allow-unsolved-metas #-}
|
||||
|
||||
module Cat.Category.Bij where
|
||||
|
||||
open import Cubical hiding ( Id )
|
||||
open import Cubical.FromStdLib
|
||||
|
||||
module _ {A : Set} {a : A} {P : A → Set} where
|
||||
Q : A → Set
|
||||
Q a = A
|
||||
|
||||
t : Σ[ a ∈ A ] P a → Q a
|
||||
t (a , Pa) = a
|
||||
u : Q a → Σ[ a ∈ A ] P a
|
||||
u a = a , {!!}
|
||||
|
||||
tu-bij : (a : Q a) → (t ∘ u) a ≡ a
|
||||
tu-bij a = refl
|
||||
|
||||
v : P a → Q a
|
||||
v x = {!!}
|
||||
w : Q a → P a
|
||||
w x = {!!}
|
||||
|
||||
vw-bij : (a : P a) → (w ∘ v) a ≡ a
|
||||
vw-bij a = {!!}
|
||||
-- tubij a with (t ∘ u) a
|
||||
-- ... | q = {!!}
|
||||
|
||||
data Id {A : Set} (a : A) : Set where
|
||||
id : A → Id a
|
||||
|
||||
data Id' {A : Set} (a : A) : Set where
|
||||
id' : A → Id' a
|
||||
|
||||
T U : Set
|
||||
T = Id a
|
||||
U = Id' a
|
||||
|
||||
f : T → U
|
||||
f (id x) = id' x
|
||||
g : U → T
|
||||
g (id' x) = id x
|
||||
|
||||
fg-bij : (x : U) → (f ∘ g) x ≡ x
|
||||
fg-bij (id' x) = {!!}
|
|
@ -1,53 +0,0 @@
|
|||
{-# OPTIONS --cubical #-}
|
||||
|
||||
module Cat.Category.Pathy where
|
||||
|
||||
open import Level
|
||||
open import Cubical
|
||||
|
||||
{-
|
||||
module _ {ℓ ℓ'} {A : Set ℓ} {x : A}
|
||||
(P : ∀ y → x ≡ y → Set ℓ') (d : P x ((λ i → x))) where
|
||||
pathJ' : (y : A) → (p : x ≡ y) → P y p
|
||||
pathJ' _ p = transp (λ i → uncurry P (contrSingl p i)) d
|
||||
|
||||
pathJprop' : pathJ' _ refl ≡ d
|
||||
pathJprop' i
|
||||
= primComp (λ _ → P x refl) i (λ {j (i = i1) → d}) d
|
||||
|
||||
|
||||
module _ {ℓ ℓ'} {A : Set ℓ}
|
||||
(P : (x y : A) → x ≡ y → Set ℓ') (d : (x : A) → P x x refl) where
|
||||
pathJ'' : (x y : A) → (p : x ≡ y) → P x y p
|
||||
pathJ'' _ _ p = transp (λ i →
|
||||
let
|
||||
P' = uncurry P
|
||||
q = (contrSingl p i)
|
||||
in
|
||||
{!uncurry (uncurry P)!} ) d
|
||||
-}
|
||||
|
||||
module _ {ℓ ℓ'} {A : Set ℓ}
|
||||
(C : (x y : A) → x ≡ y → Set ℓ')
|
||||
(c : (x : A) → C x x refl) where
|
||||
|
||||
=-ind : (x y : A) → (p : x ≡ y) → C x y p
|
||||
=-ind x y p = pathJ (C x) (c x) y p
|
||||
|
||||
module _ {ℓ ℓ' : Level} {A : Set ℓ} {P : A → Set ℓ} {x y : A} where
|
||||
private
|
||||
D : (x y : A) → (x ≡ y) → Set ℓ
|
||||
D x y p = P x → P y
|
||||
|
||||
id : {ℓ : Level} → {A : Set ℓ} → A → A
|
||||
id x = x
|
||||
|
||||
d : (x : A) → D x x refl
|
||||
d x = id {A = P x}
|
||||
|
||||
-- the p refers to the third argument
|
||||
liftP : x ≡ y → P x → P y
|
||||
liftP p = =-ind D d x y p
|
||||
|
||||
-- lift' : (u : P x) → (p : x ≡ y) → (x , u) ≡ (y , liftP p u)
|
||||
-- lift' u p = {!!}
|
Loading…
Reference in a new issue