Prove propositionality for naturality
This commit is contained in:
parent
7f4a8a65b8
commit
3151fb3e46
|
@ -58,7 +58,8 @@ module NaturalTransformation {ℓc ℓc' ℓd ℓd' : Level}
|
||||||
NaturalTransformation = Σ Transformation Natural
|
NaturalTransformation = Σ Transformation Natural
|
||||||
|
|
||||||
-- Think I need propPi and that arrows are sets
|
-- Think I need propPi and that arrows are sets
|
||||||
postulate propIsNatural : (θ : _) → isProp (Natural θ)
|
propIsNatural : (θ : _) → isProp (Natural θ)
|
||||||
|
propIsNatural θ x y i {A} {B} f = 𝔻.arrowsAreSets _ _ (x f) (y f) i
|
||||||
|
|
||||||
NaturalTransformation≡ : {α β : NaturalTransformation}
|
NaturalTransformation≡ : {α β : NaturalTransformation}
|
||||||
→ (eq₁ : α .proj₁ ≡ β .proj₁)
|
→ (eq₁ : α .proj₁ ≡ β .proj₁)
|
||||||
|
|
Loading…
Reference in a new issue