Put in brackets for readability
This commit is contained in:
parent
2d0dfab12a
commit
326951d826
|
@ -109,7 +109,7 @@ definitions: If we let $p$ be a witness to the identity law, which formally is:
|
||||||
\label{eq:identity}
|
\label{eq:identity}
|
||||||
\var{IsIdentity} \defeq
|
\var{IsIdentity} \defeq
|
||||||
\prod_{A\ B \tp \Object} \prod_{f \tp \Arrow\ A\ B}
|
\prod_{A\ B \tp \Object} \prod_{f \tp \Arrow\ A\ B}
|
||||||
\id \lll f \equiv f \x f \lll \id \equiv f
|
\left(\id \lll f \equiv f\right) \x \left(f \lll \id \equiv f\right)
|
||||||
\end{equation}
|
\end{equation}
|
||||||
%
|
%
|
||||||
Then we can construct the identity isomorphism $\idIso \tp \identity,
|
Then we can construct the identity isomorphism $\idIso \tp \identity,
|
||||||
|
@ -160,8 +160,13 @@ And laws:
|
||||||
%% \tag{associativity}
|
%% \tag{associativity}
|
||||||
h \lll (g \lll f) ≡ (h \lll g) \lll f \\
|
h \lll (g \lll f) ≡ (h \lll g) \lll f \\
|
||||||
%% \tag{identity}
|
%% \tag{identity}
|
||||||
\identity \lll f ≡ f \x
|
\left(
|
||||||
|
\identity \lll f ≡ f
|
||||||
|
\right)
|
||||||
|
\x
|
||||||
|
\left(
|
||||||
f \lll \identity ≡ f
|
f \lll \identity ≡ f
|
||||||
|
\right)
|
||||||
\\
|
\\
|
||||||
\label{eq:arrows-are-sets}
|
\label{eq:arrows-are-sets}
|
||||||
%% \tag{arrows are sets}
|
%% \tag{arrows are sets}
|
||||||
|
@ -201,7 +206,7 @@ So the proof goes like this: We `eliminate' the 3 function abstractions by
|
||||||
applying $\propPi$ three times. So our proof obligation becomes:
|
applying $\propPi$ three times. So our proof obligation becomes:
|
||||||
%
|
%
|
||||||
$$
|
$$
|
||||||
\isProp\ \left( \id \comp f \equiv f \x f \comp \id \equiv f \right)
|
\isProp\ \left( \left( \id \comp f \equiv f \right) \x \left( f \comp \id \equiv f \right) \right)
|
||||||
$$
|
$$
|
||||||
%
|
%
|
||||||
Then we eliminate the (non-dependent) sigma-type by applying $\propSig$ giving
|
Then we eliminate the (non-dependent) sigma-type by applying $\propSig$ giving
|
||||||
|
@ -360,7 +365,7 @@ The usual notion of a function $f \tp A \to B$ having an inverses is:
|
||||||
%
|
%
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\label{eq:isomorphism}
|
\label{eq:isomorphism}
|
||||||
\sum_{g \tp B \to A} f \comp g \equiv \identity \x g \comp f \equiv \identity
|
\sum_{g \tp B \to A} \left( f \comp g \equiv \identity \right) \x \left( g \comp f \equiv \identity \right)
|
||||||
\end{equation}
|
\end{equation}
|
||||||
%
|
%
|
||||||
This is defined in \cite[p. 129]{hott-2013} where it is referred to as the a
|
This is defined in \cite[p. 129]{hott-2013} where it is referred to as the a
|
||||||
|
@ -608,7 +613,7 @@ An inhabitant of $A \approxeq B$ is simply an arrow $f \tp \Arrow\ A\ B$
|
||||||
and its inverse $g \tp \Arrow\ B\ A$. In the opposite category $g$ will
|
and its inverse $g \tp \Arrow\ B\ A$. In the opposite category $g$ will
|
||||||
play the role of the isomorphism and $f$ will be the inverse. Similarly we can
|
play the role of the isomorphism and $f$ will be the inverse. Similarly we can
|
||||||
go in the opposite direction. I name these maps $\shufflef \tp (A \approxeq
|
go in the opposite direction. I name these maps $\shufflef \tp (A \approxeq
|
||||||
B) \to (A \wideoverbar{\approxeq} B)$ and $\shuffle^{-1} \tp (A
|
B) \to (A \wideoverbar{\approxeq} B)$ and $\shufflef^{-1} \tp (A
|
||||||
\wideoverbar{\approxeq} B) \to (A \approxeq B)$ respectively.
|
\wideoverbar{\approxeq} B) \to (A \approxeq B)$ respectively.
|
||||||
|
|
||||||
As the inverse of $\wideoverbar{\idToIso}$ I will pick $\wideoverbar{\isoToId}
|
As the inverse of $\wideoverbar{\idToIso}$ I will pick $\wideoverbar{\isoToId}
|
||||||
|
@ -648,8 +653,8 @@ $$
|
||||||
$$
|
$$
|
||||||
%
|
%
|
||||||
As we have seen the laws in $\left(\bC^{\var{Op}}\right)^{\var{Op}}$ get quite
|
As we have seen the laws in $\left(\bC^{\var{Op}}\right)^{\var{Op}}$ get quite
|
||||||
involved.\footnote{We have not even seen the full story because we have used
|
involved\footnote{We have not even seen the full story because we have used
|
||||||
this `interface' for equivalences.} Luckily since being-a-category is a mere
|
this `interface' for equivalences.}. Luckily since being-a-category is a mere
|
||||||
proposition, we need not concern ourselves with this bit when proving the above.
|
proposition, we need not concern ourselves with this bit when proving the above.
|
||||||
We can use the equality principle for categories that let us prove an equality
|
We can use the equality principle for categories that let us prove an equality
|
||||||
just by giving an equality on the data-part. So, given a category $\bC$ all we
|
just by giving an equality on the data-part. So, given a category $\bC$ all we
|
||||||
|
@ -798,13 +803,13 @@ inverse to $f$. The path $p$ is inhabited by:
|
||||||
%
|
%
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
x
|
x
|
||||||
& \equiv x \comp \identity \\
|
& = x \comp \identity \\
|
||||||
& \equiv x \comp (f \comp y)
|
& \equiv x \comp (f \comp y)
|
||||||
&& \text{$y$ is an inverse to $f$} \\
|
&& \text{$y$ is an inverse to $f$} \\
|
||||||
& \equiv (x \comp f) \comp y \\
|
& \equiv (x \comp f) \comp y \\
|
||||||
& \equiv \identity \comp y
|
& \equiv \identity \comp y
|
||||||
&& \text{$x$ is an inverse to $f$} \\
|
&& \text{$x$ is an inverse to $f$} \\
|
||||||
& \equiv y
|
& = y
|
||||||
\end{align*}
|
\end{align*}
|
||||||
%
|
%
|
||||||
For the other (dependent) path we can prove that being-an-inverse-of is a
|
For the other (dependent) path we can prove that being-an-inverse-of is a
|
||||||
|
@ -1061,10 +1066,11 @@ the implementation for the details).
|
||||||
|
|
||||||
\emph{Proposition} \ref{eq:univ-1} is isomorphic to \ref{eq:univ-2}:
|
\emph{Proposition} \ref{eq:univ-1} is isomorphic to \ref{eq:univ-2}:
|
||||||
This proof of this has been omitted but can be found in the module:
|
This proof of this has been omitted but can be found in the module:
|
||||||
\begin{center}
|
%
|
||||||
|
\begin{center}%
|
||||||
\sourcelink{Cat.Categories.Span}
|
\sourcelink{Cat.Categories.Span}
|
||||||
\end{center}
|
\end{center}
|
||||||
|
%
|
||||||
\emph{Proposition} \ref{eq:univ-2} is isomorphic to \ref{eq:univ-3}: For this I
|
\emph{Proposition} \ref{eq:univ-2} is isomorphic to \ref{eq:univ-3}: For this I
|
||||||
will show two corollaries of \ref{eq:coeCod}: For an isomorphism $(\iota,
|
will show two corollaries of \ref{eq:coeCod}: For an isomorphism $(\iota,
|
||||||
\inv{\iota}, \var{inv}) \tp A \cong B$, arrows $f \tp \Arrow\ A\ X$, $g \tp
|
\inv{\iota}, \var{inv}) \tp A \cong B$, arrows $f \tp \Arrow\ A\ X$, $g \tp
|
||||||
|
@ -1108,7 +1114,7 @@ To show that this choice fits the bill I must now verify that it satisfies
|
||||||
\ref{eq:pairArrowLaw}, which in this case becomes:
|
\ref{eq:pairArrowLaw}, which in this case becomes:
|
||||||
%
|
%
|
||||||
\begin{align}
|
\begin{align}
|
||||||
y_{\mathcal{A}} \lll f ≡ x_{\mathcal{A}} × y_{\mathcal{B}} \lll f ≡ x_{\mathcal{B}}
|
(y_{\mathcal{A}} \lll f ≡ x_{\mathcal{A}}) × (y_{\mathcal{B}} \lll f ≡ x_{\mathcal{B}})
|
||||||
\end{align}
|
\end{align}
|
||||||
%
|
%
|
||||||
Which, since $f$ is an isomorphism and $p_{\mathcal{A}}$ (resp.\ $p_{\mathcal{B}}$)
|
Which, since $f$ is an isomorphism and $p_{\mathcal{A}}$ (resp.\ $p_{\mathcal{B}}$)
|
||||||
|
@ -1217,10 +1223,11 @@ indeed a product. That is, for an object $Y$ and two arrows $y_𝒜 \tp
|
||||||
%
|
%
|
||||||
\begin{align}
|
\begin{align}
|
||||||
\label{eq:pairCondRev}
|
\label{eq:pairCondRev}
|
||||||
\begin{split}
|
%% \begin{split}
|
||||||
x_𝒜 \lll f & ≡ y_𝒜 \\
|
( x_𝒜 \lll f ≡ y_𝒜 )
|
||||||
x_ℬ \lll f & ≡ y_ℬ
|
\x
|
||||||
\end{split}
|
( x_ℬ \lll f ≡ y_ℬ )
|
||||||
|
%% \end{split}
|
||||||
\end{align}
|
\end{align}
|
||||||
%
|
%
|
||||||
Since $X, x_𝒜, x_ℬ$ is a terminal object there is a \emph{unique} arrow from
|
Since $X, x_𝒜, x_ℬ$ is a terminal object there is a \emph{unique} arrow from
|
||||||
|
@ -1250,8 +1257,9 @@ of proofs:
|
||||||
Here $\Phi$ is given as:
|
Here $\Phi$ is given as:
|
||||||
$$
|
$$
|
||||||
\prod_{f \tp \Arrow\ Y\ X}
|
\prod_{f \tp \Arrow\ Y\ X}
|
||||||
x_𝒜 \lll f ≡ y_𝒜
|
( x_𝒜 \lll f ≡ y_𝒜 )
|
||||||
× x_ℬ \lll f ≡ y_ℬ
|
×
|
||||||
|
( x_ℬ \lll f ≡ y_ℬ )
|
||||||
$$
|
$$
|
||||||
%
|
%
|
||||||
$p$ follows from the universal property of $y_𝒜 \x y_ℬ$. For the latter we will
|
$p$ follows from the universal property of $y_𝒜 \x y_ℬ$. For the latter we will
|
||||||
|
@ -1260,8 +1268,9 @@ more general result:
|
||||||
%
|
%
|
||||||
$$
|
$$
|
||||||
\prod_{f \tp \Arrow\ Y\ X} \isProp\ (
|
\prod_{f \tp \Arrow\ Y\ X} \isProp\ (
|
||||||
x_𝒜 \lll f ≡ y_𝒜
|
( x_𝒜 \lll f ≡ y_𝒜 )
|
||||||
× x_ℬ \lll f ≡ y_ℬ
|
×
|
||||||
|
( x_ℬ \lll f ≡ y_ℬ )
|
||||||
)
|
)
|
||||||
$$
|
$$
|
||||||
%
|
%
|
||||||
|
|
|
@ -90,8 +90,8 @@
|
||||||
\newunicodechar{⟨}{\textfallback{⟨}}
|
\newunicodechar{⟨}{\textfallback{⟨}}
|
||||||
\newunicodechar{⟩}{\textfallback{⟩}}
|
\newunicodechar{⟩}{\textfallback{⟩}}
|
||||||
\newunicodechar{∎}{\textfallback{∎}}
|
\newunicodechar{∎}{\textfallback{∎}}
|
||||||
\newunicodechar{𝒜}{\textfallback{?}}
|
%% \newunicodechar{𝒜}{\textfallback{𝒜}}
|
||||||
\newunicodechar{ℬ}{\textfallback{?}}
|
%% \newunicodechar{ℬ}{\textfallback{ℬ}}
|
||||||
%% \newunicodechar{≊}{\textfallback{≊}}
|
%% \newunicodechar{≊}{\textfallback{≊}}
|
||||||
\makeatletter
|
\makeatletter
|
||||||
\newcommand*{\rom}[1]{\expandafter\@slowroman\romannumeral #1@}
|
\newcommand*{\rom}[1]{\expandafter\@slowroman\romannumeral #1@}
|
||||||
|
|
Loading…
Reference in a new issue