Use new syntax in cat
This commit is contained in:
parent
7ed99a6bb4
commit
32b9ce2ea8
|
@ -18,7 +18,7 @@ open Equality.Data.Product
|
|||
|
||||
open Functor
|
||||
open IsFunctor
|
||||
open Category hiding (_∘_)
|
||||
open Category using (Object ; 𝟙)
|
||||
|
||||
-- The category of categories
|
||||
module _ (ℓ ℓ' : Level) where
|
||||
|
@ -45,7 +45,7 @@ module _ (ℓ ℓ' : Level) where
|
|||
]
|
||||
|
||||
assc : H ∘f (G ∘f F) ≡ (H ∘f G) ∘f F
|
||||
assc = Functor≡ eq* eq→ (IsFunctor≡ eqI eqD)
|
||||
assc = Functor≡ eq* eq→
|
||||
|
||||
module _ {ℂ 𝔻 : Category ℓ ℓ'} {F : Functor ℂ 𝔻} where
|
||||
module _ where
|
||||
|
@ -55,7 +55,7 @@ module _ (ℓ ℓ' : Level) where
|
|||
-- lemmm : func→ {C = A} {D = B} (f ∘f identity) ≡ func→ f
|
||||
eq→ : PathP
|
||||
(λ i →
|
||||
{x y : Object ℂ} → Arrow ℂ x y → Arrow 𝔻 (func* F x) (func* F y))
|
||||
{x y : Object ℂ} → ℂ [ x , y ] → 𝔻 [ func* F x , func* F y ])
|
||||
(func→ (F ∘f identity)) (func→ F)
|
||||
eq→ = refl
|
||||
postulate
|
||||
|
@ -69,14 +69,14 @@ module _ (ℓ ℓ' : Level) where
|
|||
eq→ i (ℂ [ g ∘ f ]) ≡ 𝔻 [ eq→ i g ∘ eq→ i f ])
|
||||
((F ∘f identity) .isFunctor .distrib) (F .isFunctor .distrib)
|
||||
ident-r : F ∘f identity ≡ F
|
||||
ident-r = Functor≡ eq* eq→ (IsFunctor≡ eqI-r eqD-r)
|
||||
ident-r = Functor≡ eq* eq→
|
||||
module _ where
|
||||
private
|
||||
postulate
|
||||
eq* : (identity ∘f F) .func* ≡ F .func*
|
||||
eq* : func* (identity ∘f F) ≡ func* F
|
||||
eq→ : PathP
|
||||
(λ i → {x y : Object ℂ} → ℂ [ x , y ] → 𝔻 [ eq* i x , eq* i y ])
|
||||
((identity ∘f F) .func→) (F .func→)
|
||||
(func→ (identity ∘f F)) (func→ F)
|
||||
eqI : (λ i → ∀ {A : Object ℂ} → eq→ i (𝟙 ℂ {A}) ≡ 𝟙 𝔻 {eq* i A})
|
||||
[ ((identity ∘f F) .isFunctor .ident) ≡ (F .isFunctor .ident) ]
|
||||
eqD : PathP (λ i → {A B C : Object ℂ} {f : ℂ [ A , B ]} {g : ℂ [ B , C ]}
|
||||
|
@ -84,7 +84,7 @@ module _ (ℓ ℓ' : Level) where
|
|||
((identity ∘f F) .isFunctor .distrib) (F .isFunctor .distrib)
|
||||
-- (λ z → eq* i z) (eq→ i)
|
||||
ident-l : identity ∘f F ≡ F
|
||||
ident-l = Functor≡ eq* eq→ λ i → record { ident = eqI i ; distrib = eqD i }
|
||||
ident-l = Functor≡ eq* eq→
|
||||
|
||||
RawCat : RawCategory (lsuc (ℓ ⊔ ℓ')) (ℓ ⊔ ℓ')
|
||||
RawCat =
|
||||
|
@ -104,11 +104,11 @@ module _ (ℓ ℓ' : Level) where
|
|||
:isCategory: : IsCategory RawCat
|
||||
assoc :isCategory: {f = F} {G} {H} = assc {F = F} {G = G} {H = H}
|
||||
ident :isCategory: = ident-r , ident-l
|
||||
arrow-is-set :isCategory: = {!!}
|
||||
arrowIsSet :isCategory: = {!!}
|
||||
univalent :isCategory: = {!!}
|
||||
|
||||
Cat : Category (lsuc (ℓ ⊔ ℓ')) (ℓ ⊔ ℓ')
|
||||
raw Cat = RawCat
|
||||
Category.raw Cat = RawCat
|
||||
|
||||
module _ {ℓ ℓ' : Level} where
|
||||
module _ (ℂ 𝔻 : Category ℓ ℓ') where
|
||||
|
@ -116,7 +116,7 @@ module _ {ℓ ℓ' : Level} where
|
|||
Catt = Cat ℓ ℓ'
|
||||
:Object: = Object ℂ × Object 𝔻
|
||||
:Arrow: : :Object: → :Object: → Set ℓ'
|
||||
:Arrow: (c , d) (c' , d') = Arrow ℂ c c' × Arrow 𝔻 d d'
|
||||
:Arrow: (c , d) (c' , d') = ℂ [ c , c' ] × 𝔻 [ d , d' ]
|
||||
:𝟙: : {o : :Object:} → :Arrow: o o
|
||||
:𝟙: = 𝟙 ℂ , 𝟙 𝔻
|
||||
_:⊕:_ :
|
||||
|
@ -132,8 +132,8 @@ module _ {ℓ ℓ' : Level} where
|
|||
RawCategory.𝟙 :rawProduct: = :𝟙:
|
||||
RawCategory._∘_ :rawProduct: = _:⊕:_
|
||||
|
||||
module C = IsCategory (ℂ .isCategory)
|
||||
module D = IsCategory (𝔻 .isCategory)
|
||||
module C = Category ℂ
|
||||
module D = Category 𝔻
|
||||
postulate
|
||||
issSet : {A B : RawCategory.Object :rawProduct:} → isSet (RawCategory.Arrow :rawProduct: A B)
|
||||
instance
|
||||
|
@ -150,17 +150,23 @@ module _ {ℓ ℓ' : Level} where
|
|||
IsCategory.ident :isCategory:
|
||||
= Σ≡ (fst C.ident) (fst D.ident)
|
||||
, Σ≡ (snd C.ident) (snd D.ident)
|
||||
IsCategory.arrow-is-set :isCategory: = issSet
|
||||
IsCategory.arrowIsSet :isCategory: = issSet
|
||||
IsCategory.univalent :isCategory: = {!!}
|
||||
|
||||
:product: : Category ℓ ℓ'
|
||||
raw :product: = :rawProduct:
|
||||
Category.raw :product: = :rawProduct:
|
||||
|
||||
proj₁ : Catt [ :product: , ℂ ]
|
||||
proj₁ = record { func* = fst ; func→ = fst ; isFunctor = record { ident = refl ; distrib = refl } }
|
||||
proj₁ = record
|
||||
{ raw = record { func* = fst ; func→ = fst }
|
||||
; isFunctor = record { ident = refl ; distrib = refl }
|
||||
}
|
||||
|
||||
proj₂ : Catt [ :product: , 𝔻 ]
|
||||
proj₂ = record { func* = snd ; func→ = snd ; isFunctor = record { ident = refl ; distrib = refl } }
|
||||
proj₂ = record
|
||||
{ raw = record { func* = snd ; func→ = snd }
|
||||
; isFunctor = record { ident = refl ; distrib = refl }
|
||||
}
|
||||
|
||||
module _ {X : Object Catt} (x₁ : Catt [ X , ℂ ]) (x₂ : Catt [ X , 𝔻 ]) where
|
||||
open Functor
|
||||
|
@ -232,7 +238,7 @@ module _ (ℓ : Level) where
|
|||
:obj: = Fun {ℂ = ℂ} {𝔻 = 𝔻}
|
||||
|
||||
:func*: : Functor ℂ 𝔻 × Object ℂ → Object 𝔻
|
||||
:func*: (F , A) = F .func* A
|
||||
:func*: (F , A) = func* F A
|
||||
|
||||
module _ {dom cod : Functor ℂ 𝔻 × Object ℂ} where
|
||||
private
|
||||
|
@ -247,27 +253,27 @@ module _ (ℓ : Level) where
|
|||
B = proj₂ cod
|
||||
|
||||
:func→: : (pobj : NaturalTransformation F G × ℂ [ A , B ])
|
||||
→ 𝔻 [ F .func* A , G .func* B ]
|
||||
→ 𝔻 [ func* F A , func* G B ]
|
||||
:func→: ((θ , θNat) , f) = result
|
||||
where
|
||||
θA : 𝔻 [ F .func* A , G .func* A ]
|
||||
θA : 𝔻 [ func* F A , func* G A ]
|
||||
θA = θ A
|
||||
θB : 𝔻 [ F .func* B , G .func* B ]
|
||||
θB : 𝔻 [ func* F B , func* G B ]
|
||||
θB = θ B
|
||||
F→f : 𝔻 [ F .func* A , F .func* B ]
|
||||
F→f = F .func→ f
|
||||
G→f : 𝔻 [ G .func* A , G .func* B ]
|
||||
G→f = G .func→ f
|
||||
l : 𝔻 [ F .func* A , G .func* B ]
|
||||
F→f : 𝔻 [ func* F A , func* F B ]
|
||||
F→f = func→ F f
|
||||
G→f : 𝔻 [ func* G A , func* G B ]
|
||||
G→f = func→ G f
|
||||
l : 𝔻 [ func* F A , func* G B ]
|
||||
l = 𝔻 [ θB ∘ F→f ]
|
||||
r : 𝔻 [ F .func* A , G .func* B ]
|
||||
r : 𝔻 [ func* F A , func* G B ]
|
||||
r = 𝔻 [ G→f ∘ θA ]
|
||||
-- There are two choices at this point,
|
||||
-- but I suppose the whole point is that
|
||||
-- by `θNat f` we have `l ≡ r`
|
||||
-- lem : 𝔻 [ θ B ∘ F .func→ f ] ≡ 𝔻 [ G .func→ f ∘ θ A ]
|
||||
-- lem = θNat f
|
||||
result : 𝔻 [ F .func* A , G .func* B ]
|
||||
result : 𝔻 [ func* F A , func* G B ]
|
||||
result = l
|
||||
|
||||
_×p_ = product
|
||||
|
@ -285,16 +291,16 @@ module _ (ℓ : Level) where
|
|||
-- where
|
||||
-- open module 𝔻 = IsCategory (𝔻 .isCategory)
|
||||
-- Unfortunately the equational version has some ambigous arguments.
|
||||
:ident: : :func→: {c} {c} (identityNat F , 𝟙 ℂ {o = proj₂ c}) ≡ 𝟙 𝔻
|
||||
:ident: : :func→: {c} {c} (identityNat F , 𝟙 ℂ {A = proj₂ c}) ≡ 𝟙 𝔻
|
||||
:ident: = begin
|
||||
:func→: {c} {c} (𝟙 (Product.obj (:obj: ×p ℂ)) {c}) ≡⟨⟩
|
||||
:func→: {c} {c} (identityNat F , 𝟙 ℂ) ≡⟨⟩
|
||||
𝔻 [ identityTrans F C ∘ F .func→ (𝟙 ℂ)] ≡⟨⟩
|
||||
𝔻 [ 𝟙 𝔻 ∘ F .func→ (𝟙 ℂ)] ≡⟨ proj₂ 𝔻.ident ⟩
|
||||
F .func→ (𝟙 ℂ) ≡⟨ F.ident ⟩
|
||||
𝔻 [ identityTrans F C ∘ func→ F (𝟙 ℂ)] ≡⟨⟩
|
||||
𝔻 [ 𝟙 𝔻 ∘ func→ F (𝟙 ℂ)] ≡⟨ proj₂ 𝔻.ident ⟩
|
||||
func→ F (𝟙 ℂ) ≡⟨ F.ident ⟩
|
||||
𝟙 𝔻 ∎
|
||||
where
|
||||
open module 𝔻 = IsCategory (𝔻 .isCategory)
|
||||
open module 𝔻 = Category 𝔻
|
||||
open module F = IsFunctor (F .isFunctor)
|
||||
|
||||
module _ {F×A G×B H×C : Functor ℂ 𝔻 × Object ℂ} where
|
||||
|
@ -331,35 +337,38 @@ module _ (ℓ : Level) where
|
|||
ηθNat = proj₂ ηθNT
|
||||
|
||||
:distrib: :
|
||||
𝔻 [ 𝔻 [ η C ∘ θ C ] ∘ F .func→ ( ℂ [ g ∘ f ] ) ]
|
||||
≡ 𝔻 [ 𝔻 [ η C ∘ G .func→ g ] ∘ 𝔻 [ θ B ∘ F .func→ f ] ]
|
||||
𝔻 [ 𝔻 [ η C ∘ θ C ] ∘ func→ F ( ℂ [ g ∘ f ] ) ]
|
||||
≡ 𝔻 [ 𝔻 [ η C ∘ func→ G g ] ∘ 𝔻 [ θ B ∘ func→ F f ] ]
|
||||
:distrib: = begin
|
||||
𝔻 [ (ηθ C) ∘ F .func→ (ℂ [ g ∘ f ]) ]
|
||||
𝔻 [ (ηθ C) ∘ func→ F (ℂ [ g ∘ f ]) ]
|
||||
≡⟨ ηθNat (ℂ [ g ∘ f ]) ⟩
|
||||
𝔻 [ H .func→ (ℂ [ g ∘ f ]) ∘ (ηθ A) ]
|
||||
𝔻 [ func→ H (ℂ [ g ∘ f ]) ∘ (ηθ A) ]
|
||||
≡⟨ cong (λ φ → 𝔻 [ φ ∘ ηθ A ]) (H.distrib) ⟩
|
||||
𝔻 [ 𝔻 [ H .func→ g ∘ H .func→ f ] ∘ (ηθ A) ]
|
||||
𝔻 [ 𝔻 [ func→ H g ∘ func→ H f ] ∘ (ηθ A) ]
|
||||
≡⟨ sym assoc ⟩
|
||||
𝔻 [ H .func→ g ∘ 𝔻 [ H .func→ f ∘ ηθ A ] ]
|
||||
≡⟨ cong (λ φ → 𝔻 [ H .func→ g ∘ φ ]) assoc ⟩
|
||||
𝔻 [ H .func→ g ∘ 𝔻 [ 𝔻 [ H .func→ f ∘ η A ] ∘ θ A ] ]
|
||||
≡⟨ cong (λ φ → 𝔻 [ H .func→ g ∘ φ ]) (cong (λ φ → 𝔻 [ φ ∘ θ A ]) (sym (ηNat f))) ⟩
|
||||
𝔻 [ H .func→ g ∘ 𝔻 [ 𝔻 [ η B ∘ G .func→ f ] ∘ θ A ] ]
|
||||
≡⟨ cong (λ φ → 𝔻 [ H .func→ g ∘ φ ]) (sym assoc) ⟩
|
||||
𝔻 [ H .func→ g ∘ 𝔻 [ η B ∘ 𝔻 [ G .func→ f ∘ θ A ] ] ] ≡⟨ assoc ⟩
|
||||
𝔻 [ 𝔻 [ H .func→ g ∘ η B ] ∘ 𝔻 [ G .func→ f ∘ θ A ] ]
|
||||
≡⟨ cong (λ φ → 𝔻 [ φ ∘ 𝔻 [ G .func→ f ∘ θ A ] ]) (sym (ηNat g)) ⟩
|
||||
𝔻 [ 𝔻 [ η C ∘ G .func→ g ] ∘ 𝔻 [ G .func→ f ∘ θ A ] ]
|
||||
≡⟨ cong (λ φ → 𝔻 [ 𝔻 [ η C ∘ G .func→ g ] ∘ φ ]) (sym (θNat f)) ⟩
|
||||
𝔻 [ 𝔻 [ η C ∘ G .func→ g ] ∘ 𝔻 [ θ B ∘ F .func→ f ] ] ∎
|
||||
𝔻 [ func→ H g ∘ 𝔻 [ func→ H f ∘ ηθ A ] ]
|
||||
≡⟨ cong (λ φ → 𝔻 [ func→ H g ∘ φ ]) assoc ⟩
|
||||
𝔻 [ func→ H g ∘ 𝔻 [ 𝔻 [ func→ H f ∘ η A ] ∘ θ A ] ]
|
||||
≡⟨ cong (λ φ → 𝔻 [ func→ H g ∘ φ ]) (cong (λ φ → 𝔻 [ φ ∘ θ A ]) (sym (ηNat f))) ⟩
|
||||
𝔻 [ func→ H g ∘ 𝔻 [ 𝔻 [ η B ∘ func→ G f ] ∘ θ A ] ]
|
||||
≡⟨ cong (λ φ → 𝔻 [ func→ H g ∘ φ ]) (sym assoc) ⟩
|
||||
𝔻 [ func→ H g ∘ 𝔻 [ η B ∘ 𝔻 [ func→ G f ∘ θ A ] ] ]
|
||||
≡⟨ assoc ⟩
|
||||
𝔻 [ 𝔻 [ func→ H g ∘ η B ] ∘ 𝔻 [ func→ G f ∘ θ A ] ]
|
||||
≡⟨ cong (λ φ → 𝔻 [ φ ∘ 𝔻 [ func→ G f ∘ θ A ] ]) (sym (ηNat g)) ⟩
|
||||
𝔻 [ 𝔻 [ η C ∘ func→ G g ] ∘ 𝔻 [ func→ G f ∘ θ A ] ]
|
||||
≡⟨ cong (λ φ → 𝔻 [ 𝔻 [ η C ∘ func→ G g ] ∘ φ ]) (sym (θNat f)) ⟩
|
||||
𝔻 [ 𝔻 [ η C ∘ func→ G g ] ∘ 𝔻 [ θ B ∘ func→ F f ] ] ∎
|
||||
where
|
||||
open IsCategory (𝔻 .isCategory)
|
||||
open module H = IsFunctor (H .isFunctor)
|
||||
open Category 𝔻
|
||||
module H = IsFunctor (H .isFunctor)
|
||||
|
||||
:eval: : Functor ((:obj: ×p ℂ) .Product.obj) 𝔻
|
||||
:eval: = record
|
||||
{ raw = record
|
||||
{ func* = :func*:
|
||||
; func→ = λ {dom} {cod} → :func→: {dom} {cod}
|
||||
}
|
||||
; isFunctor = record
|
||||
{ ident = λ {o} → :ident: {o}
|
||||
; distrib = λ {f u n k y} → :distrib: {f} {u} {n} {k} {y}
|
||||
|
@ -371,7 +380,7 @@ module _ (ℓ : Level) where
|
|||
|
||||
postulate
|
||||
transpose : Functor 𝔸 :obj:
|
||||
eq : Catℓ [ :eval: ∘ (parallelProduct transpose (𝟙 Catℓ {o = ℂ})) ] ≡ F
|
||||
eq : Catℓ [ :eval: ∘ (parallelProduct transpose (𝟙 Catℓ {A = ℂ})) ] ≡ F
|
||||
-- eq : Catℓ [ :eval: ∘ (HasProducts._|×|_ hasProducts transpose (𝟙 Catℓ {o = ℂ})) ] ≡ F
|
||||
-- eq' : (Catℓ [ :eval: ∘
|
||||
-- (record { product = product } HasProducts.|×| transpose)
|
||||
|
|
Loading…
Reference in a new issue