[WIP] A long way towards proving univalence in the category of hSets
This commit is contained in:
parent
43563d1ad9
commit
32d1833d51
|
@ -15,7 +15,7 @@ open import Cat.Category
|
|||
open import Cat.Category.Functor
|
||||
open import Cat.Category.Product
|
||||
open import Cat.Wishlist
|
||||
open import Cat.Equivalence as Eqv renaming (module NoEta to Eeq) using (AreInverses)
|
||||
open import Cat.Equivalence as Eqv renaming (module NoEta to Eeq) using (AreInverses ; module Equiv≃)
|
||||
|
||||
module Equivalence = Eeq.Equivalence′
|
||||
|
||||
|
@ -27,12 +27,33 @@ sym≃ = Equivalence.symmetry
|
|||
|
||||
infixl 10 _⊙_
|
||||
|
||||
inv-coe : {ℓ : Level} {A B : Set ℓ} {a : A}
|
||||
→ (p : A ≡ B) → coe (sym p) (coe p a) ≡ a
|
||||
inv-coe = {!!}
|
||||
inv-coe' : {ℓ : Level} {A B : Set ℓ} {a : A}
|
||||
→ (p : B ≡ A) → coe p (coe (sym p) a) ≡ a
|
||||
inv-coe' = {!!}
|
||||
module _ {ℓ : Level} {A : Set ℓ} {a : A} where
|
||||
id-coe : coe refl a ≡ a
|
||||
id-coe = begin
|
||||
coe refl a ≡⟨ {!!} ⟩
|
||||
a ∎
|
||||
|
||||
module _ {ℓ : Level} {A B : Set ℓ} {a : A} where
|
||||
inv-coe : (p : A ≡ B) → coe (sym p) (coe p a) ≡ a
|
||||
inv-coe p =
|
||||
let
|
||||
D : (y : Set ℓ) → _ ≡ y → Set _
|
||||
D _ q = coe (sym q) (coe q a) ≡ a
|
||||
d : D A refl
|
||||
d = begin
|
||||
coe (sym refl) (coe refl a) ≡⟨⟩
|
||||
coe refl (coe refl a) ≡⟨ id-coe ⟩
|
||||
coe refl a ≡⟨ id-coe ⟩
|
||||
a ∎
|
||||
in pathJ D d B p
|
||||
inv-coe' : (p : B ≡ A) → coe p (coe (sym p) a) ≡ a
|
||||
inv-coe' p =
|
||||
let
|
||||
D : (y : Set ℓ) → _ ≡ y → Set _
|
||||
D _ q = coe (sym q) (coe q a) ≡ a
|
||||
k : coe p (coe (sym p) a) ≡ a
|
||||
k = pathJ D (trans id-coe id-coe) B (sym p)
|
||||
in k
|
||||
|
||||
module _ (ℓ : Level) where
|
||||
private
|
||||
|
@ -125,8 +146,8 @@ module _ (ℓ : Level) where
|
|||
iso : (p ≡ q) Eqv.≅ (proj₁ p ≡ proj₁ q)
|
||||
iso = f , g , inv
|
||||
|
||||
lem3 : {Q : A → Set ℓb} → ((a : A) → P a ≃ Q a)
|
||||
→ Σ A P ≃ Σ A Q
|
||||
lem3 : {Q : A → Set ℓb}
|
||||
→ ((a : A) → P a ≃ Q a) → Σ A P ≃ Σ A Q
|
||||
lem3 {Q} eA = res
|
||||
where
|
||||
P→Q : ∀ {a} → P a ≡ Q a
|
||||
|
@ -165,9 +186,25 @@ module _ (ℓ : Level) where
|
|||
res = Eeq.fromIsomorphism iso
|
||||
|
||||
module _ {ℓa ℓb : Level} {A : Set ℓa} {B : Set ℓb} where
|
||||
postulate
|
||||
lem4 : isSet A → isSet B → (f : A → B)
|
||||
→ isEquiv A B f ≃ isIso f
|
||||
lem4 sA sB f =
|
||||
let
|
||||
obv : isEquiv A B f → isIso f
|
||||
obv = Equiv≃.toIso A B
|
||||
inv : isIso f → isEquiv A B f
|
||||
inv = Equiv≃.fromIso A B
|
||||
re-ve : (x : isEquiv A B f) → (inv ∘ obv) x ≡ x
|
||||
re-ve = Equiv≃.inverse-from-to-iso A B
|
||||
ve-re : (x : isIso f) → (obv ∘ inv) x ≡ x
|
||||
ve-re = Equiv≃.inverse-to-from-iso A B
|
||||
iso : isEquiv A B f Eqv.≅ isIso f
|
||||
iso = obv , inv ,
|
||||
record
|
||||
{ verso-recto = funExt re-ve
|
||||
; recto-verso = funExt ve-re
|
||||
}
|
||||
in Eeq.fromIsomorphism iso
|
||||
|
||||
module _ {hA hB : Object} where
|
||||
private
|
||||
|
@ -176,13 +213,24 @@ module _ (ℓ : Level) where
|
|||
B = proj₁ hB
|
||||
sB = proj₂ hB
|
||||
|
||||
postulate
|
||||
|
||||
-- lem3 and the equivalence from lem4
|
||||
step0 : Σ (A → B) isIso ≃ Σ (A → B) (isEquiv A B)
|
||||
step0 = lem3 (λ f → sym≃ (lem4 sA sB f))
|
||||
-- univalence
|
||||
step1 : Σ (A → B) (isEquiv A B) ≃ (A ≡ B)
|
||||
step1 =
|
||||
let
|
||||
h : (A ≃ B) ≃ (A ≡ B)
|
||||
h = sym≃ (univalence {A = A} {B})
|
||||
k : Σ _ (isEquiv (A ≃ B) (A ≡ B))
|
||||
k = Eqv.doEta h
|
||||
in {!!}
|
||||
|
||||
-- lem2 with propIsSet
|
||||
step2 : (A ≡ B) ≃ (hA ≡ hB)
|
||||
step2 = sym≃ (lem2 (λ A → isSetIsProp) hA hB)
|
||||
|
||||
-- Go from an isomorphism on sets to an isomorphism on homotopic sets
|
||||
trivial? : (hA ≅ hB) ≃ Σ (A → B) isIso
|
||||
trivial? = sym≃ (Eeq.fromIsomorphism res)
|
||||
|
|
|
@ -58,6 +58,23 @@ module _ {ℓa ℓb ℓ : Level} (A : Set ℓa) (B : Set ℓb) where
|
|||
_~_ : Set ℓa → Set ℓb → Set _
|
||||
A ~ B = Σ _ iseqv
|
||||
|
||||
inverse-from-to-iso : ∀ {f} (x : _) → (fromIso {f} ∘ toIso {f}) x ≡ x
|
||||
inverse-from-to-iso x = begin
|
||||
(fromIso ∘ toIso) x ≡⟨⟩
|
||||
fromIso (toIso x) ≡⟨ propIsEquiv _ (fromIso (toIso x)) x ⟩
|
||||
x ∎
|
||||
|
||||
-- `toIso` is abstract - so I probably can't close this proof.
|
||||
-- inverse-to-from-iso : ∀ {f} → toIso {f} ∘ fromIso {f} ≡ idFun _
|
||||
-- inverse-to-from-iso = funExt (λ x → begin
|
||||
-- (toIso ∘ fromIso) x ≡⟨⟩
|
||||
-- toIso (fromIso x) ≡⟨ cong toIso (propIsEquiv _ (fromIso x) y) ⟩
|
||||
-- toIso y ≡⟨ {!!} ⟩
|
||||
-- x ∎)
|
||||
-- where
|
||||
-- y : iseqv _
|
||||
-- y = {!!}
|
||||
|
||||
fromIsomorphism : A ≅ B → A ~ B
|
||||
fromIsomorphism (f , iso) = f , fromIso iso
|
||||
|
||||
|
@ -130,7 +147,26 @@ module _ {ℓa ℓb : Level} (A : Set ℓa) (B : Set ℓb) where
|
|||
where
|
||||
import Cubical.NType.Properties as P
|
||||
|
||||
module Equiv≃ = Equiv ≃isEquiv
|
||||
module Equiv≃ where
|
||||
open Equiv ≃isEquiv public
|
||||
inverse-to-from-iso : ∀ {f} (x : _) → (toIso {f} ∘ fromIso {f}) x ≡ x
|
||||
inverse-to-from-iso {f} x = begin
|
||||
(toIso ∘ fromIso) x ≡⟨⟩
|
||||
toIso (fromIso x) ≡⟨ cong toIso (propIsEquiv _ (fromIso x) y) ⟩
|
||||
toIso y ≡⟨ py ⟩
|
||||
x ∎
|
||||
where
|
||||
helper : (x : Isomorphism _) → Σ _ λ y → toIso y ≡ x
|
||||
helper (f~ , inv) = y , py
|
||||
where
|
||||
module inv = AreInverses inv
|
||||
y : isEquiv _ _ f
|
||||
y = {!!}
|
||||
py : toIso y ≡ (f~ , inv)
|
||||
py = {!!}
|
||||
y : isEquiv _ _ _
|
||||
y = fst (helper x)
|
||||
py = snd (helper x)
|
||||
|
||||
module _ {ℓa ℓb : Level} {A : Set ℓa} {B : Set ℓb} where
|
||||
open Cubical.PathPrelude using (_≃_)
|
||||
|
@ -210,6 +246,12 @@ module NoEta {ℓa ℓb : Level} {A : Set ℓa} {B : Set ℓb} where
|
|||
symmetry : B ≃ A
|
||||
symmetry = deEta (Equivalence.symmetry (doEta e))
|
||||
|
||||
-- fromIso : {f : A → B} → Isomorphism f → isEquiv f
|
||||
-- fromIso = ?
|
||||
|
||||
-- toIso : {f : A → B} → isEquiv f → Isomorphism f
|
||||
-- toIso = ?
|
||||
|
||||
fromIsomorphism : A ≅ B → A ≃ B
|
||||
fromIsomorphism (f , iso) = _≃_.con f (Equiv≃.fromIso _ _ iso)
|
||||
|
||||
|
|
Loading…
Reference in a new issue