Prove that functor composition gives rise to a functor
This commit is contained in:
parent
4175bd87ac
commit
3e717d4b1f
|
@ -11,6 +11,7 @@ open import Data.Empty
|
|||
postulate undefined : {ℓ : Level} → {A : Set ℓ} → A
|
||||
|
||||
record Category {ℓ ℓ'} : Set (lsuc (ℓ' ⊔ ℓ)) where
|
||||
constructor category
|
||||
field
|
||||
Object : Set ℓ
|
||||
Arrow : Object → Object → Set ℓ'
|
||||
|
@ -21,51 +22,67 @@ record Category {ℓ ℓ'} : Set (lsuc (ℓ' ⊔ ℓ)) where
|
|||
ident : { A B : Object } { f : Arrow A B }
|
||||
→ f ⊕ 𝟙 ≡ f × 𝟙 ⊕ f ≡ f
|
||||
infixl 45 _⊕_
|
||||
dom : { a b : Object } → Arrow a b → Object
|
||||
dom {a = a} _ = a
|
||||
cod : { a b : Object } → Arrow a b → Object
|
||||
cod {b = b} _ = b
|
||||
domain : { a b : Object } → Arrow a b → Object
|
||||
domain {a = a} _ = a
|
||||
codomain : { a b : Object } → Arrow a b → Object
|
||||
codomain {b = b} _ = b
|
||||
|
||||
open Category public
|
||||
|
||||
record Functor {ℓc ℓc' ℓd ℓd'} (C : Category {ℓc} {ℓc'}) (D : Category {ℓd} {ℓd'})
|
||||
: Set (ℓc ⊔ ℓc' ⊔ ℓd ⊔ ℓd') where
|
||||
constructor functor
|
||||
private
|
||||
open module C = Category C
|
||||
open module D = Category D
|
||||
field
|
||||
F : C.Object → D.Object
|
||||
f : {c c' : C.Object} → C.Arrow c c' → D.Arrow (F c) (F c')
|
||||
ident : { c : C.Object } → f (C.𝟙 {c}) ≡ D.𝟙 {F c}
|
||||
func* : C.Object → D.Object
|
||||
func→ : {dom cod : C.Object} → C.Arrow dom cod → D.Arrow (func* dom) (func* cod)
|
||||
ident : { c : C.Object } → func→ (C.𝟙 {c}) ≡ D.𝟙 {func* c}
|
||||
-- TODO: Avoid use of ugly explicit arguments somehow.
|
||||
-- This guy managed to do it:
|
||||
-- https://github.com/copumpkin/categories/blob/master/Categories/Functor/Core.agda
|
||||
distrib : { c c' c'' : C.Object} {a : C.Arrow c c'} {a' : C.Arrow c' c''}
|
||||
→ f (a' C.⊕ a) ≡ f a' D.⊕ f a
|
||||
→ func→ (a' C.⊕ a) ≡ func→ a' D.⊕ func→ a
|
||||
|
||||
FunctorComp : ∀ {ℓ ℓ'} {a b c : Category {ℓ} {ℓ'}} → Functor b c → Functor a b → Functor a c
|
||||
FunctorComp {a = a} {b = b} {c = c} F G =
|
||||
record
|
||||
{ F = F.F ∘ G.F
|
||||
; f = F.f ∘ G.f
|
||||
; ident = λ { {c = obj} →
|
||||
let --t : (F.f ∘ G.f) (𝟙 a) ≡ (𝟙 c)
|
||||
g-ident = G.ident
|
||||
k : F.f (G.f {c' = obj} (𝟙 a)) ≡ F.f (G.f (𝟙 a))
|
||||
k = refl {x = F.f (G.f (𝟙 a))}
|
||||
t : F.f (G.f (𝟙 a)) ≡ (𝟙 c)
|
||||
-- t = subst F.ident (subst G.ident k)
|
||||
t = undefined
|
||||
in t }
|
||||
; distrib = undefined -- subst F.distrib (subst G.distrib refl)
|
||||
}
|
||||
where
|
||||
open module F = Functor F
|
||||
open module G = Functor G
|
||||
module _ {ℓ ℓ' : Level} {A B C : Category {ℓ} {ℓ'}} (F : Functor B C) (G : Functor A B) where
|
||||
private
|
||||
open module F = Functor F
|
||||
open module G = Functor G
|
||||
open module A = Category A
|
||||
open module B = Category B
|
||||
open module C = Category C
|
||||
|
||||
F* = F.func*
|
||||
F→ = F.func→
|
||||
G* = G.func*
|
||||
G→ = G.func→
|
||||
module _ {a0 a1 a2 : A.Object} {α0 : A.Arrow a0 a1} {α1 : A.Arrow a1 a2} where
|
||||
|
||||
dist : (F→ ∘ G→) (α1 A.⊕ α0) ≡ (F→ ∘ G→) α1 C.⊕ (F→ ∘ G→) α0
|
||||
dist = begin
|
||||
(F→ ∘ G→) (α1 A.⊕ α0) ≡⟨ refl ⟩
|
||||
F→ (G→ (α1 A.⊕ α0)) ≡⟨ cong F→ G.distrib ⟩
|
||||
F→ ((G→ α1) B.⊕ (G→ α0)) ≡⟨ F.distrib ⟩
|
||||
(F→ ∘ G→) α1 C.⊕ (F→ ∘ G→) α0 ∎
|
||||
|
||||
functor-comp : Functor A C
|
||||
functor-comp =
|
||||
record
|
||||
{ func* = F* ∘ G*
|
||||
; func→ = F→ ∘ G→
|
||||
; ident = begin
|
||||
(F→ ∘ G→) (A.𝟙) ≡⟨ refl ⟩
|
||||
F→ (G→ (A.𝟙)) ≡⟨ cong F→ G.ident ⟩
|
||||
F→ (B.𝟙) ≡⟨ F.ident ⟩
|
||||
C.𝟙 ∎
|
||||
; distrib = dist
|
||||
}
|
||||
|
||||
-- The identity functor
|
||||
Identity : {ℓ ℓ' : Level} → {C : Category {ℓ} {ℓ'}} → Functor C C
|
||||
Identity = record { F = λ x → x ; f = λ x → x ; ident = refl ; distrib = refl }
|
||||
identity : {ℓ ℓ' : Level} → {C : Category {ℓ} {ℓ'}} → Functor C C
|
||||
-- Identity = record { F* = λ x → x ; F→ = λ x → x ; ident = refl ; distrib = refl }
|
||||
identity = functor (λ x → x) (λ x → x) (refl) (refl)
|
||||
|
||||
module _ {ℓ ℓ' : Level} {ℂ : Category {ℓ} {ℓ'}} { A B : Object ℂ } where
|
||||
private
|
||||
|
@ -116,9 +133,6 @@ module _ {ℓ ℓ' : Level} {ℂ : Category {ℓ} {ℓ'}} { A B : Object ℂ } w
|
|||
iso-is-epi-mono : ∀ {X} (f : ℂ.Arrow A B ) → Isomorphism f → Epimorphism {X = X} f × Monomorphism {X = X} f
|
||||
iso-is-epi-mono f iso = iso-is-epi f iso , iso-is-mono f iso
|
||||
|
||||
¬_ : {ℓ : Level} → Set ℓ → Set ℓ
|
||||
¬ A = A → ⊥
|
||||
|
||||
{-
|
||||
epi-mono-is-not-iso : ∀ {ℓ ℓ'} → ¬ ((ℂ : Category {ℓ} {ℓ'}) {A B X : Object ℂ} (f : Arrow ℂ A B ) → Epimorphism {ℂ = ℂ} {X = X} f → Monomorphism {ℂ = ℂ} {X = X} f → Isomorphism {ℂ = ℂ} f)
|
||||
epi-mono-is-not-iso f =
|
||||
|
@ -126,6 +140,7 @@ epi-mono-is-not-iso f =
|
|||
in {!!}
|
||||
-}
|
||||
|
||||
-- Isomorphism of objects
|
||||
_≅_ : { ℓ ℓ' : Level } → { ℂ : Category {ℓ} {ℓ'} } → ( A B : Object ℂ ) → Set ℓ'
|
||||
_≅_ {ℂ = ℂ} A B = Σ[ f ∈ ℂ.Arrow A B ] (Isomorphism {ℂ = ℂ} f)
|
||||
where
|
||||
|
@ -167,19 +182,50 @@ Opposite ℂ =
|
|||
where
|
||||
open module ℂ = Category ℂ
|
||||
|
||||
CatCat : {ℓ ℓ' : Level} → Category {ℓ-suc (ℓ ⊔ ℓ')} {ℓ ⊔ ℓ'}
|
||||
CatCat {ℓ} {ℓ'} =
|
||||
record
|
||||
{ Object = Category {ℓ} {ℓ'}
|
||||
; Arrow = Functor
|
||||
; 𝟙 = Identity
|
||||
; _⊕_ = FunctorComp
|
||||
; assoc = undefined
|
||||
; ident = λ { {f = f} →
|
||||
let eq : f ≡ f
|
||||
eq = refl
|
||||
in undefined , undefined}
|
||||
}
|
||||
-- The category of categories
|
||||
module _ {ℓ ℓ' : Level} where
|
||||
private
|
||||
_⊛_ = functor-comp
|
||||
module _ {A B C D : Category {ℓ} {ℓ'}} {f : Functor A B} {g : Functor B C} {h : Functor C D} where
|
||||
assc : h ⊛ (g ⊛ f) ≡ (h ⊛ g) ⊛ f
|
||||
assc = {!!}
|
||||
|
||||
module _ {A B : Category {ℓ} {ℓ'}} where
|
||||
lift-eq : (f g : Functor A B)
|
||||
→ (eq* : Functor.func* f ≡ Functor.func* g)
|
||||
-- TODO: Must transport here using the equality from above.
|
||||
-- Reason:
|
||||
-- func→ : Arrow A dom cod → Arrow B (func* dom) (func* cod)
|
||||
-- func→₁ : Arrow A dom cod → Arrow B (func*₁ dom) (func*₁ cod)
|
||||
-- In other words, func→ and func→₁ does not have the same type.
|
||||
-- → Functor.func→ f ≡ Functor.func→ g
|
||||
-- → Functor.ident f ≡ Functor.ident g
|
||||
-- → Functor.distrib f ≡ Functor.distrib g
|
||||
→ f ≡ g
|
||||
lift-eq
|
||||
(functor func* func→ idnt distrib)
|
||||
(functor func*₁ func→₁ idnt₁ distrib₁)
|
||||
eq-func* = {!!}
|
||||
|
||||
module _ {A B : Category {ℓ} {ℓ'}} {f : Functor A B} where
|
||||
idHere = identity {ℓ} {ℓ'} {A}
|
||||
lem : (Functor.func* f) ∘ (Functor.func* idHere) ≡ Functor.func* f
|
||||
lem = refl
|
||||
ident-r : f ⊛ identity ≡ f
|
||||
ident-r = lift-eq (f ⊛ identity) f refl
|
||||
ident-l : identity ⊛ f ≡ f
|
||||
ident-l = {!!}
|
||||
|
||||
CatCat : Category {ℓ-suc (ℓ ⊔ ℓ')} {ℓ ⊔ ℓ'}
|
||||
CatCat =
|
||||
record
|
||||
{ Object = Category {ℓ} {ℓ'}
|
||||
; Arrow = Functor
|
||||
; 𝟙 = identity
|
||||
; _⊕_ = functor-comp
|
||||
; assoc = {!!}
|
||||
; ident = ident-r , ident-l
|
||||
}
|
||||
|
||||
Hom : {ℓ ℓ' : Level} → {ℂ : Category {ℓ} {ℓ'}} → (A B : Object ℂ) → Set ℓ'
|
||||
Hom {ℂ = ℂ} A B = Arrow ℂ A B
|
||||
|
|
Loading…
Reference in a new issue