diff --git a/src/Cat/Categories/Free.agda b/src/Cat/Categories/Free.agda index 326152a..19cabeb 100644 --- a/src/Cat/Categories/Free.agda +++ b/src/Cat/Categories/Free.agda @@ -9,14 +9,6 @@ open import Cat.Category open IsCategory --- data Path {ℓ : Level} {A : Set ℓ} : (a b : A) → Set ℓ where --- emptyPath : {a : A} → Path a a --- concatenate : {a b c : A} → Path a b → Path b c → Path a b - --- import Data.List --- P : (a b : Object ℂ) → Set (ℓ ⊔ ℓ') --- P = {!Data.List.List ?!} --- Generalized paths: data Path {ℓ ℓ' : Level} {A : Set ℓ} (R : A → A → Set ℓ') : (a b : A) → Set (ℓ ⊔ ℓ') where empty : {a : A} → Path R a a cons : {a b c : A} → R b c → Path R a b → Path R a c diff --git a/src/Cat/Equality.agda b/src/Cat/Equality.agda index c3c333d..d6b3dc0 100644 --- a/src/Cat/Equality.agda +++ b/src/Cat/Equality.agda @@ -20,28 +20,3 @@ module Equality where Σ≡ : a ≡ b proj₁ (Σ≡ i) = proj₁≡ i proj₂ (Σ≡ i) = proj₂≡ i - - -- Remark 2.7.1: This theorem: - -- - -- (x , u) ≡ (x , v) → u ≡ v - -- - -- does *not* hold! We can only conclude that there *exists* `p : x ≡ x` - -- such that - -- - -- p* u ≡ v - -- thm : isSet A → (∀ {a} → isSet (B a)) → isSet (Σ A B) - -- thm sA sB (x , y) (x' , y') p q = res - -- where - -- x≡x'0 : x ≡ x' - -- x≡x'0 = λ i → proj₁ (p i) - -- x≡x'1 : x ≡ x' - -- x≡x'1 = λ i → proj₁ (q i) - -- someP : x ≡ x' - -- someP = {!!} - -- tricky : {!y!} ≡ y' - -- tricky = {!!} - -- -- res' : (λ _ → Σ A B) [ (x , y) ≡ (x' , y') ] - -- res' : ({!!} , {!!}) ≡ ({!!} , {!!}) - -- res' = {!!} - -- res : p ≡ q - -- res i = {!res'!}