Remove commented code
This commit is contained in:
parent
de1d19c442
commit
3f3247c870
|
@ -9,14 +9,6 @@ open import Cat.Category
|
|||
|
||||
open IsCategory
|
||||
|
||||
-- data Path {ℓ : Level} {A : Set ℓ} : (a b : A) → Set ℓ where
|
||||
-- emptyPath : {a : A} → Path a a
|
||||
-- concatenate : {a b c : A} → Path a b → Path b c → Path a b
|
||||
|
||||
-- import Data.List
|
||||
-- P : (a b : Object ℂ) → Set (ℓ ⊔ ℓ')
|
||||
-- P = {!Data.List.List ?!}
|
||||
-- Generalized paths:
|
||||
data Path {ℓ ℓ' : Level} {A : Set ℓ} (R : A → A → Set ℓ') : (a b : A) → Set (ℓ ⊔ ℓ') where
|
||||
empty : {a : A} → Path R a a
|
||||
cons : {a b c : A} → R b c → Path R a b → Path R a c
|
||||
|
|
|
@ -20,28 +20,3 @@ module Equality where
|
|||
Σ≡ : a ≡ b
|
||||
proj₁ (Σ≡ i) = proj₁≡ i
|
||||
proj₂ (Σ≡ i) = proj₂≡ i
|
||||
|
||||
-- Remark 2.7.1: This theorem:
|
||||
--
|
||||
-- (x , u) ≡ (x , v) → u ≡ v
|
||||
--
|
||||
-- does *not* hold! We can only conclude that there *exists* `p : x ≡ x`
|
||||
-- such that
|
||||
--
|
||||
-- p* u ≡ v
|
||||
-- thm : isSet A → (∀ {a} → isSet (B a)) → isSet (Σ A B)
|
||||
-- thm sA sB (x , y) (x' , y') p q = res
|
||||
-- where
|
||||
-- x≡x'0 : x ≡ x'
|
||||
-- x≡x'0 = λ i → proj₁ (p i)
|
||||
-- x≡x'1 : x ≡ x'
|
||||
-- x≡x'1 = λ i → proj₁ (q i)
|
||||
-- someP : x ≡ x'
|
||||
-- someP = {!!}
|
||||
-- tricky : {!y!} ≡ y'
|
||||
-- tricky = {!!}
|
||||
-- -- res' : (λ _ → Σ A B) [ (x , y) ≡ (x' , y') ]
|
||||
-- res' : ({!!} , {!!}) ≡ ({!!} , {!!})
|
||||
-- res' = {!!}
|
||||
-- res : p ≡ q
|
||||
-- res i = {!res'!}
|
||||
|
|
Loading…
Reference in a new issue