[WIP] Prove voe §2.3
By Andrea The reason you cannot use cong in [1] is that §2-fromMonad result type depends on the input, you need a dependent version of cong: cong-d : ∀ {ℓ} {A : Set ℓ} {ℓ'} {B : A → Set ℓ'} {x y : A} → (f : (x : A) → B x) → (eq : x ≡ y) → PathP (\ i → B (eq i)) (f x) (f y) cong-d f p = λ i → f (p i) I attach a modified Voevodsky.agda. Notice that the definition of "t" is still highlighted in yellow, that's because it being a homogeneous path depends on the exact definition of lem, see the comment with the two definitional equality constraints.
This commit is contained in:
parent
3ab88395dc
commit
41e2d02c8d
|
@ -1,7 +1,7 @@
|
|||
{-
|
||||
This module provides construction 2.3 in [voe]
|
||||
-}
|
||||
{-# OPTIONS --cubical --allow-unsolved-metas #-}
|
||||
{-# OPTIONS --cubical --allow-unsolved-metas --caching #-}
|
||||
module Cat.Category.Monad.Voevodsky where
|
||||
|
||||
open import Agda.Primitive
|
||||
|
@ -19,6 +19,7 @@ open import Cat.Category.Monad using (Monoidal≃Kleisli)
|
|||
import Cat.Category.Monad.Monoidal as Monoidal
|
||||
import Cat.Category.Monad.Kleisli as Kleisli
|
||||
open import Cat.Categories.Fun
|
||||
open import Function using (_∘′_)
|
||||
|
||||
module voe {ℓa ℓb : Level} (ℂ : Category ℓa ℓb) where
|
||||
private
|
||||
|
@ -147,7 +148,7 @@ module voe {ℓa ℓb : Level} (ℂ : Category ℓa ℓb) where
|
|||
back : §2-3.§2 omap pure → §2-3.§1 omap pure
|
||||
back = §1-fromMonad ∘ Kleisli→Monoidal ∘ §2-3.§2.toMonad
|
||||
|
||||
forthEq : ∀ m → _ ≡ _
|
||||
forthEq : ∀ m → (forth ∘ back) m ≡ m
|
||||
forthEq m = begin
|
||||
(forth ∘ back) m ≡⟨⟩
|
||||
-- In full gory detail:
|
||||
|
@ -175,12 +176,21 @@ module voe {ℓa ℓb : Level} (ℂ : Category ℓa ℓb) where
|
|||
where
|
||||
lem : Monoidal→Kleisli ∘ Kleisli→Monoidal ≡ Function.id
|
||||
lem = {!!} -- verso-recto Monoidal≃Kleisli
|
||||
t : (§2-fromMonad ∘ (Monoidal→Kleisli ∘ Kleisli→Monoidal) ∘ §2-3.§2.toMonad)
|
||||
t' : ((Monoidal→Kleisli ∘ Kleisli→Monoidal) ∘ §2-3.§2.toMonad {omap} {pure})
|
||||
≡ §2-3.§2.toMonad
|
||||
t' = cong (\ φ → φ ∘ §2-3.§2.toMonad) lem
|
||||
cong-d : ∀ {ℓ} {A : Set ℓ} {ℓ'} {B : A → Set ℓ'} {x y : A} → (f : (x : A) → B x) → (eq : x ≡ y) → PathP (\ i → B (eq i)) (f x) (f y)
|
||||
cong-d f p = λ i → f (p i)
|
||||
t : (§2-fromMonad ∘ (Monoidal→Kleisli ∘ Kleisli→Monoidal) ∘ §2-3.§2.toMonad {omap} {pure})
|
||||
≡ (§2-fromMonad ∘ §2-3.§2.toMonad)
|
||||
t = cong (λ φ → §2-fromMonad ∘ (λ{ {ω} → φ {{!????!}}}) ∘ §2-3.§2.toMonad) {!lem!}
|
||||
t = cong-d (\ f → §2-fromMonad ∘ f) t'
|
||||
u : (§2-fromMonad ∘ (Monoidal→Kleisli ∘ Kleisli→Monoidal) ∘ §2-3.§2.toMonad) m
|
||||
≡ (§2-fromMonad ∘ §2-3.§2.toMonad) m
|
||||
u = cong (λ φ → φ m) t
|
||||
u = cong (\ f → f m) t
|
||||
{-
|
||||
(K.RawMonad.omap (K.Monad.raw (?0 ℂ omap pure m i (§2-3.§2.toMonad m))) x) = (omap x) : Object
|
||||
(K.RawMonad.pure (K.Monad.raw (?0 ℂ omap pure m x (§2-3.§2.toMonad x)))) = pure : Arrow X (_350 ℂ omap pure m x x X)
|
||||
-}
|
||||
|
||||
backEq : ∀ m → (back ∘ forth) m ≡ m
|
||||
backEq m = begin
|
||||
|
|
Loading…
Reference in a new issue