Rename the category of relations
This commit is contained in:
parent
6ca9368891
commit
43cc73c6a8
|
@ -7,21 +7,6 @@ open import Cubical.GradLemma
|
||||||
open import Agda.Primitive
|
open import Agda.Primitive
|
||||||
open import Category
|
open import Category
|
||||||
|
|
||||||
-- Sets are built-in to Agda. The set of all small sets is called Set.
|
|
||||||
|
|
||||||
Fun : {ℓ : Level} → ( T U : Set ℓ ) → Set ℓ
|
|
||||||
Fun T U = T → U
|
|
||||||
|
|
||||||
𝕊et-as-Cat : {ℓ : Level} → Category {lsuc ℓ} {ℓ}
|
|
||||||
𝕊et-as-Cat {ℓ} = record
|
|
||||||
{ Object = Set ℓ
|
|
||||||
; Arrow = λ T U → Fun {ℓ} T U
|
|
||||||
; 𝟙 = λ x → x
|
|
||||||
; _⊕_ = λ g f x → g ( f x )
|
|
||||||
; assoc = refl
|
|
||||||
; ident = funExt (λ x → refl) , funExt (λ x → refl)
|
|
||||||
}
|
|
||||||
|
|
||||||
-- Subsets are predicates over some type.
|
-- Subsets are predicates over some type.
|
||||||
Subset : {ℓ : Level} → ( A : Set ℓ ) → Set (ℓ ⊔ lsuc lzero)
|
Subset : {ℓ : Level} → ( A : Set ℓ ) → Set (ℓ ⊔ lsuc lzero)
|
||||||
Subset A = A → Set
|
Subset A = A → Set
|
||||||
|
@ -166,8 +151,8 @@ module _ {A B C D : Set} {S : Subset (A × B)} {R : Subset (B × C)} {Q : Subset
|
||||||
≡ (Σ[ b ∈ B ] (a , b) ∈ S × (Σ[ c ∈ C ] (b , c) ∈ R × (c , d) ∈ Q))
|
≡ (Σ[ b ∈ B ] (a , b) ∈ S × (Σ[ c ∈ C ] (b , c) ∈ R × (c , d) ∈ Q))
|
||||||
assocc = equivToPath equi
|
assocc = equivToPath equi
|
||||||
|
|
||||||
Rel-as-Cat : Category
|
Rel : Category
|
||||||
Rel-as-Cat = record
|
Rel = record
|
||||||
{ Object = Set
|
{ Object = Set
|
||||||
; Arrow = λ S R → Subset (S × R)
|
; Arrow = λ S R → Subset (S × R)
|
||||||
; 𝟙 = λ {S} → Diag S
|
; 𝟙 = λ {S} → Diag S
|
||||||
|
@ -175,17 +160,3 @@ Rel-as-Cat = record
|
||||||
; assoc = funExt assocc
|
; assoc = funExt assocc
|
||||||
; ident = funExt ident-l , funExt ident-r
|
; ident = funExt ident-l , funExt ident-r
|
||||||
}
|
}
|
||||||
|
|
||||||
module _ {ℓ ℓ' : Level} {ℂ : Category {ℓ} {ℓ}} where
|
|
||||||
private
|
|
||||||
C-Obj = Object ℂ
|
|
||||||
_+_ = Arrow ℂ
|
|
||||||
|
|
||||||
RepFunctor : Functor ℂ 𝕊et-as-Cat
|
|
||||||
RepFunctor =
|
|
||||||
record
|
|
||||||
{ F = λ A → (B : C-Obj) → Hom {ℂ = ℂ} A B
|
|
||||||
; f = λ { {c' = c'} f g → {!HomFromArrow {ℂ = } c' g!}}
|
|
||||||
; ident = {!!}
|
|
||||||
; distrib = {!!}
|
|
||||||
}
|
|
||||||
|
|
Loading…
Reference in a new issue