Update backlog
This commit is contained in:
parent
69689e7b2a
commit
472dbba84d
|
@ -10,13 +10,16 @@ Prove that these two formulations of univalence are equivalent:
|
||||||
∀ A → isContr (Σ[ X ∈ Object ] A ≅ X)
|
∀ A → isContr (Σ[ X ∈ Object ] A ≅ X)
|
||||||
|
|
||||||
Prove univalence for the category of
|
Prove univalence for the category of
|
||||||
* the opposite category
|
|
||||||
* functors and natural transformations
|
* functors and natural transformations
|
||||||
|
|
||||||
Prove:
|
Prove:
|
||||||
* `isProp (Product ...)`
|
* `isProp (Product ...)`
|
||||||
* `isProp (HasProducts ...)`
|
* `isProp (HasProducts ...)`
|
||||||
|
|
||||||
|
Rename composition in categories
|
||||||
|
|
||||||
|
In stead of using AreInverses, just use a sigma-type
|
||||||
|
|
||||||
Ideas for future work
|
Ideas for future work
|
||||||
---------------------
|
---------------------
|
||||||
|
|
||||||
|
|
Loading…
Reference in a new issue