Rename arrowIsSet to arrowsAreSets

This commit is contained in:
Frederik Hanghøj Iversen 2018-02-23 12:51:44 +01:00
parent 6446435a49
commit 48423cc816
8 changed files with 22 additions and 22 deletions

View file

@ -88,7 +88,7 @@ module _ { ' : Level} (unprovable : IsCategory (RawCat ')) where
module D = Category 𝔻
open import Cubical.Sigma
issSet : {A B : RawCategory.Object :rawProduct:} isSet (Arrow A B)
issSet = setSig {sA = C.arrowIsSet} {sB = λ x D.arrowIsSet}
issSet = setSig {sA = C.arrowsAreSets} {sB = λ x D.arrowsAreSets}
ident' : IsIdentity :𝟙:
ident'
= Σ≡ (fst C.isIdentity) (fst D.isIdentity)
@ -98,7 +98,7 @@ module _ { ' : Level} (unprovable : IsCategory (RawCat ')) where
:isCategory: : IsCategory :rawProduct:
IsCategory.isAssociative :isCategory: = Σ≡ C.isAssociative D.isAssociative
IsCategory.isIdentity :isCategory: = ident'
IsCategory.arrowIsSet :isCategory: = issSet
IsCategory.arrowsAreSets :isCategory: = issSet
IsCategory.univalent :isCategory: = univalent
:product: : Category '

View file

@ -46,7 +46,7 @@ module _ (a b : Level) where
isCategory = record
{ isAssociative = λ {A} {B} {C} {D} {f} {g} {h} isAssociative {D = D} {f} {g} {h}
; isIdentity = λ {A} {B} {f} isIdentity {A} {B} {f = f}
; arrowIsSet = {!!}
; arrowsAreSets = {!!}
; univalent = {!!}
}

View file

@ -59,6 +59,6 @@ module _ { ' : Level} ( : Category ') where
RawIsCategoryFree = record
{ isAssociative = λ { {f = f} {g} {h} p-isAssociative {r = f} {g} {h}}
; isIdentity = ident-r , ident-l
; arrowIsSet = {!!}
; arrowsAreSets = {!!}
; univalent = {!!}
}

View file

@ -101,13 +101,13 @@ module _ {c c' d d' : Level} { : Category c c'} {𝔻 : Cat
module _ {F G : Functor 𝔻} where
transformationIsSet : isSet (Transformation F G)
transformationIsSet _ _ p q i j C = 𝔻.arrowIsSet _ _ (λ l p l C) (λ l q l C) i j
transformationIsSet _ _ p q i j C = 𝔻.arrowsAreSets _ _ (λ l p l C) (λ l q l C) i j
naturalIsProp : (θ : Transformation F G) isProp (Natural F G θ)
naturalIsProp θ θNat θNat' = lem
where
lem : (λ _ Natural F G θ) [ (λ f θNat f) (λ f θNat' f) ]
lem = λ i f 𝔻.arrowIsSet _ _ (θNat f) (θNat' f) i
lem = λ i f 𝔻.arrowsAreSets _ _ (θNat f) (θNat' f) i
naturalTransformationIsSets : isSet (NaturalTransformation F G)
naturalTransformationIsSets = sigPresSet transformationIsSet
@ -170,7 +170,7 @@ module _ {c c' d d' : Level} { : Category c c'} {𝔻 : Cat
:isCategory: = record
{ isAssociative = λ {A B C D} :isAssociative: {A} {B} {C} {D}
; isIdentity = λ {A B} :ident: {A} {B}
; arrowIsSet = λ {F} {G} naturalTransformationIsSets {F} {G}
; arrowsAreSets = λ {F} {G} naturalTransformationIsSets {F} {G}
; univalent = {!!}
}

View file

@ -166,6 +166,6 @@ RawIsCategoryRel : IsCategory RawRel
RawIsCategoryRel = record
{ isAssociative = funExt is-isAssociative
; isIdentity = funExt ident-l , funExt ident-r
; arrowIsSet = {!!}
; arrowsAreSets = {!!}
; univalent = {!!}
}

View file

@ -28,7 +28,7 @@ module _ ( : Level) where
isAssociative SetsIsCategory = refl
proj₁ (isIdentity SetsIsCategory) = funExt λ _ refl
proj₂ (isIdentity SetsIsCategory) = funExt λ _ refl
arrowIsSet SetsIsCategory {B = (_ , s)} = setPi λ _ s
arrowsAreSets SetsIsCategory {B = (_ , s)} = setPi λ _ s
univalent SetsIsCategory = {!!}
𝓢𝓮𝓽 Sets : Category (lsuc )
@ -94,7 +94,7 @@ module _ {a b : Level} where
representable : { : Category a b} Category.Object Representable
representable { = } A = record
{ raw = record
{ func* = λ B [ A , B ] , arrowIsSet
{ func* = λ B [ A , B ] , arrowsAreSets
; func→ = [_∘_]
}
; isFunctor = record
@ -109,7 +109,7 @@ module _ {a b : Level} where
presheaf : { : Category a b} Category.Object (Opposite ) Presheaf
presheaf { = } B = record
{ raw = record
{ func* = λ A [ A , B ] , arrowIsSet
{ func* = λ A [ A , B ] , arrowsAreSets
; func→ = λ f g [ g f ]
}
; isFunctor = record

View file

@ -103,7 +103,7 @@ record IsCategory {a b : Level} ( : RawCategory a b) : Set (lsuc
field
isAssociative : IsAssociative
isIdentity : IsIdentity 𝟙
arrowIsSet : ArrowsAreSets
arrowsAreSets : ArrowsAreSets
univalent : Univalent isIdentity
-- `IsCategory` is a mere proposition.
@ -115,12 +115,12 @@ module _ {a b : Level} {C : RawCategory a b} where
open import Cubical.NType.Properties
propIsAssociative : isProp IsAssociative
propIsAssociative x y i = arrowIsSet _ _ x y i
propIsAssociative x y i = arrowsAreSets _ _ x y i
propIsIdentity : {f : {A} Arrow A A} isProp (IsIdentity f)
propIsIdentity a b i
= arrowIsSet _ _ (fst a) (fst b) i
, arrowIsSet _ _ (snd a) (snd b) i
= arrowsAreSets _ _ (fst a) (fst b) i
, arrowsAreSets _ _ (snd a) (snd b) i
propArrowIsSet : isProp ( {A B} isSet (Arrow A B))
propArrowIsSet a b i = isSetIsProp a b i
@ -129,9 +129,9 @@ module _ {a b : Level} {C : RawCategory a b} where
propIsInverseOf x y = λ i
let
h : fst x fst y
h = arrowIsSet _ _ (fst x) (fst y)
h = arrowsAreSets _ _ (fst x) (fst y)
hh : snd x snd y
hh = arrowIsSet _ _ (snd x) (snd y)
hh = arrowsAreSets _ _ (snd x) (snd y)
in h i , hh i
module _ {A B : Object} {f : Arrow A B} where
@ -183,7 +183,7 @@ module _ {a b : Level} {C : RawCategory a b} where
eqUni = foo Y.univalent
IC.isAssociative (done i) = propIsAssociative x X.isAssociative Y.isAssociative i
IC.isIdentity (done i) = isIdentity i
IC.arrowIsSet (done i) = propArrowIsSet x X.arrowIsSet Y.arrowIsSet i
IC.arrowsAreSets (done i) = propArrowIsSet x X.arrowsAreSets Y.arrowsAreSets i
IC.univalent (done i) = eqUni i
propIsCategory : isProp (IsCategory C)
@ -218,7 +218,7 @@ module _ {a b : Level} ( : Category a b) where
OpIsCategory : IsCategory OpRaw
IsCategory.isAssociative OpIsCategory = sym isAssociative
IsCategory.isIdentity OpIsCategory = swap isIdentity
IsCategory.arrowIsSet OpIsCategory = arrowIsSet
IsCategory.arrowsAreSets OpIsCategory = arrowsAreSets
IsCategory.univalent OpIsCategory = {!!}
Opposite : Category a b
@ -244,7 +244,7 @@ module _ {a b : Level} { : Category a b} where
rawIsCat : (i : I) IsCategory (rawOp i)
isAssociative (rawIsCat i) = IsCat.isAssociative
isIdentity (rawIsCat i) = IsCat.isIdentity
arrowIsSet (rawIsCat i) = IsCat.arrowIsSet
arrowsAreSets (rawIsCat i) = IsCat.arrowsAreSets
univalent (rawIsCat i) = IsCat.univalent
Opposite-is-involution : Opposite (Opposite )

View file

@ -55,8 +55,8 @@ module _
propIsFunctor : isProp (IsFunctor _ _ F)
propIsFunctor isF0 isF1 i = record
{ isIdentity = 𝔻.arrowIsSet _ _ isF0.isIdentity isF1.isIdentity i
; distrib = 𝔻.arrowIsSet _ _ isF0.distrib isF1.distrib i
{ isIdentity = 𝔻.arrowsAreSets _ _ isF0.isIdentity isF1.isIdentity i
; distrib = 𝔻.arrowsAreSets _ _ isF0.distrib isF1.distrib i
}
where
module isF0 = IsFunctor isF0