Rename arrowIsSet to arrowsAreSets
This commit is contained in:
parent
6446435a49
commit
48423cc816
|
@ -88,7 +88,7 @@ module _ {ℓ ℓ' : Level} (unprovable : IsCategory (RawCat ℓ ℓ')) where
|
||||||
module D = Category 𝔻
|
module D = Category 𝔻
|
||||||
open import Cubical.Sigma
|
open import Cubical.Sigma
|
||||||
issSet : {A B : RawCategory.Object :rawProduct:} → isSet (Arrow A B)
|
issSet : {A B : RawCategory.Object :rawProduct:} → isSet (Arrow A B)
|
||||||
issSet = setSig {sA = C.arrowIsSet} {sB = λ x → D.arrowIsSet}
|
issSet = setSig {sA = C.arrowsAreSets} {sB = λ x → D.arrowsAreSets}
|
||||||
ident' : IsIdentity :𝟙:
|
ident' : IsIdentity :𝟙:
|
||||||
ident'
|
ident'
|
||||||
= Σ≡ (fst C.isIdentity) (fst D.isIdentity)
|
= Σ≡ (fst C.isIdentity) (fst D.isIdentity)
|
||||||
|
@ -98,7 +98,7 @@ module _ {ℓ ℓ' : Level} (unprovable : IsCategory (RawCat ℓ ℓ')) where
|
||||||
:isCategory: : IsCategory :rawProduct:
|
:isCategory: : IsCategory :rawProduct:
|
||||||
IsCategory.isAssociative :isCategory: = Σ≡ C.isAssociative D.isAssociative
|
IsCategory.isAssociative :isCategory: = Σ≡ C.isAssociative D.isAssociative
|
||||||
IsCategory.isIdentity :isCategory: = ident'
|
IsCategory.isIdentity :isCategory: = ident'
|
||||||
IsCategory.arrowIsSet :isCategory: = issSet
|
IsCategory.arrowsAreSets :isCategory: = issSet
|
||||||
IsCategory.univalent :isCategory: = univalent
|
IsCategory.univalent :isCategory: = univalent
|
||||||
|
|
||||||
:product: : Category ℓ ℓ'
|
:product: : Category ℓ ℓ'
|
||||||
|
|
|
@ -46,7 +46,7 @@ module _ (ℓa ℓb : Level) where
|
||||||
isCategory = record
|
isCategory = record
|
||||||
{ isAssociative = λ {A} {B} {C} {D} {f} {g} {h} → isAssociative {D = D} {f} {g} {h}
|
{ isAssociative = λ {A} {B} {C} {D} {f} {g} {h} → isAssociative {D = D} {f} {g} {h}
|
||||||
; isIdentity = λ {A} {B} {f} → isIdentity {A} {B} {f = f}
|
; isIdentity = λ {A} {B} {f} → isIdentity {A} {B} {f = f}
|
||||||
; arrowIsSet = {!!}
|
; arrowsAreSets = {!!}
|
||||||
; univalent = {!!}
|
; univalent = {!!}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
|
@ -59,6 +59,6 @@ module _ {ℓ ℓ' : Level} (ℂ : Category ℓ ℓ') where
|
||||||
RawIsCategoryFree = record
|
RawIsCategoryFree = record
|
||||||
{ isAssociative = λ { {f = f} {g} {h} → p-isAssociative {r = f} {g} {h}}
|
{ isAssociative = λ { {f = f} {g} {h} → p-isAssociative {r = f} {g} {h}}
|
||||||
; isIdentity = ident-r , ident-l
|
; isIdentity = ident-r , ident-l
|
||||||
; arrowIsSet = {!!}
|
; arrowsAreSets = {!!}
|
||||||
; univalent = {!!}
|
; univalent = {!!}
|
||||||
}
|
}
|
||||||
|
|
|
@ -101,13 +101,13 @@ module _ {ℓc ℓc' ℓd ℓd' : Level} {ℂ : Category ℓc ℓc'} {𝔻 : Cat
|
||||||
|
|
||||||
module _ {F G : Functor ℂ 𝔻} where
|
module _ {F G : Functor ℂ 𝔻} where
|
||||||
transformationIsSet : isSet (Transformation F G)
|
transformationIsSet : isSet (Transformation F G)
|
||||||
transformationIsSet _ _ p q i j C = 𝔻.arrowIsSet _ _ (λ l → p l C) (λ l → q l C) i j
|
transformationIsSet _ _ p q i j C = 𝔻.arrowsAreSets _ _ (λ l → p l C) (λ l → q l C) i j
|
||||||
|
|
||||||
naturalIsProp : (θ : Transformation F G) → isProp (Natural F G θ)
|
naturalIsProp : (θ : Transformation F G) → isProp (Natural F G θ)
|
||||||
naturalIsProp θ θNat θNat' = lem
|
naturalIsProp θ θNat θNat' = lem
|
||||||
where
|
where
|
||||||
lem : (λ _ → Natural F G θ) [ (λ f → θNat f) ≡ (λ f → θNat' f) ]
|
lem : (λ _ → Natural F G θ) [ (λ f → θNat f) ≡ (λ f → θNat' f) ]
|
||||||
lem = λ i f → 𝔻.arrowIsSet _ _ (θNat f) (θNat' f) i
|
lem = λ i f → 𝔻.arrowsAreSets _ _ (θNat f) (θNat' f) i
|
||||||
|
|
||||||
naturalTransformationIsSets : isSet (NaturalTransformation F G)
|
naturalTransformationIsSets : isSet (NaturalTransformation F G)
|
||||||
naturalTransformationIsSets = sigPresSet transformationIsSet
|
naturalTransformationIsSets = sigPresSet transformationIsSet
|
||||||
|
@ -170,7 +170,7 @@ module _ {ℓc ℓc' ℓd ℓd' : Level} {ℂ : Category ℓc ℓc'} {𝔻 : Cat
|
||||||
:isCategory: = record
|
:isCategory: = record
|
||||||
{ isAssociative = λ {A B C D} → :isAssociative: {A} {B} {C} {D}
|
{ isAssociative = λ {A B C D} → :isAssociative: {A} {B} {C} {D}
|
||||||
; isIdentity = λ {A B} → :ident: {A} {B}
|
; isIdentity = λ {A B} → :ident: {A} {B}
|
||||||
; arrowIsSet = λ {F} {G} → naturalTransformationIsSets {F} {G}
|
; arrowsAreSets = λ {F} {G} → naturalTransformationIsSets {F} {G}
|
||||||
; univalent = {!!}
|
; univalent = {!!}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
|
@ -166,6 +166,6 @@ RawIsCategoryRel : IsCategory RawRel
|
||||||
RawIsCategoryRel = record
|
RawIsCategoryRel = record
|
||||||
{ isAssociative = funExt is-isAssociative
|
{ isAssociative = funExt is-isAssociative
|
||||||
; isIdentity = funExt ident-l , funExt ident-r
|
; isIdentity = funExt ident-l , funExt ident-r
|
||||||
; arrowIsSet = {!!}
|
; arrowsAreSets = {!!}
|
||||||
; univalent = {!!}
|
; univalent = {!!}
|
||||||
}
|
}
|
||||||
|
|
|
@ -28,7 +28,7 @@ module _ (ℓ : Level) where
|
||||||
isAssociative SetsIsCategory = refl
|
isAssociative SetsIsCategory = refl
|
||||||
proj₁ (isIdentity SetsIsCategory) = funExt λ _ → refl
|
proj₁ (isIdentity SetsIsCategory) = funExt λ _ → refl
|
||||||
proj₂ (isIdentity SetsIsCategory) = funExt λ _ → refl
|
proj₂ (isIdentity SetsIsCategory) = funExt λ _ → refl
|
||||||
arrowIsSet SetsIsCategory {B = (_ , s)} = setPi λ _ → s
|
arrowsAreSets SetsIsCategory {B = (_ , s)} = setPi λ _ → s
|
||||||
univalent SetsIsCategory = {!!}
|
univalent SetsIsCategory = {!!}
|
||||||
|
|
||||||
𝓢𝓮𝓽 Sets : Category (lsuc ℓ) ℓ
|
𝓢𝓮𝓽 Sets : Category (lsuc ℓ) ℓ
|
||||||
|
@ -94,7 +94,7 @@ module _ {ℓa ℓb : Level} where
|
||||||
representable : {ℂ : Category ℓa ℓb} → Category.Object ℂ → Representable ℂ
|
representable : {ℂ : Category ℓa ℓb} → Category.Object ℂ → Representable ℂ
|
||||||
representable {ℂ = ℂ} A = record
|
representable {ℂ = ℂ} A = record
|
||||||
{ raw = record
|
{ raw = record
|
||||||
{ func* = λ B → ℂ [ A , B ] , arrowIsSet
|
{ func* = λ B → ℂ [ A , B ] , arrowsAreSets
|
||||||
; func→ = ℂ [_∘_]
|
; func→ = ℂ [_∘_]
|
||||||
}
|
}
|
||||||
; isFunctor = record
|
; isFunctor = record
|
||||||
|
@ -109,7 +109,7 @@ module _ {ℓa ℓb : Level} where
|
||||||
presheaf : {ℂ : Category ℓa ℓb} → Category.Object (Opposite ℂ) → Presheaf ℂ
|
presheaf : {ℂ : Category ℓa ℓb} → Category.Object (Opposite ℂ) → Presheaf ℂ
|
||||||
presheaf {ℂ = ℂ} B = record
|
presheaf {ℂ = ℂ} B = record
|
||||||
{ raw = record
|
{ raw = record
|
||||||
{ func* = λ A → ℂ [ A , B ] , arrowIsSet
|
{ func* = λ A → ℂ [ A , B ] , arrowsAreSets
|
||||||
; func→ = λ f g → ℂ [ g ∘ f ]
|
; func→ = λ f g → ℂ [ g ∘ f ]
|
||||||
}
|
}
|
||||||
; isFunctor = record
|
; isFunctor = record
|
||||||
|
|
|
@ -103,7 +103,7 @@ record IsCategory {ℓa ℓb : Level} (ℂ : RawCategory ℓa ℓb) : Set (lsuc
|
||||||
field
|
field
|
||||||
isAssociative : IsAssociative
|
isAssociative : IsAssociative
|
||||||
isIdentity : IsIdentity 𝟙
|
isIdentity : IsIdentity 𝟙
|
||||||
arrowIsSet : ArrowsAreSets
|
arrowsAreSets : ArrowsAreSets
|
||||||
univalent : Univalent isIdentity
|
univalent : Univalent isIdentity
|
||||||
|
|
||||||
-- `IsCategory` is a mere proposition.
|
-- `IsCategory` is a mere proposition.
|
||||||
|
@ -115,12 +115,12 @@ module _ {ℓa ℓb : Level} {C : RawCategory ℓa ℓb} where
|
||||||
open import Cubical.NType.Properties
|
open import Cubical.NType.Properties
|
||||||
|
|
||||||
propIsAssociative : isProp IsAssociative
|
propIsAssociative : isProp IsAssociative
|
||||||
propIsAssociative x y i = arrowIsSet _ _ x y i
|
propIsAssociative x y i = arrowsAreSets _ _ x y i
|
||||||
|
|
||||||
propIsIdentity : ∀ {f : ∀ {A} → Arrow A A} → isProp (IsIdentity f)
|
propIsIdentity : ∀ {f : ∀ {A} → Arrow A A} → isProp (IsIdentity f)
|
||||||
propIsIdentity a b i
|
propIsIdentity a b i
|
||||||
= arrowIsSet _ _ (fst a) (fst b) i
|
= arrowsAreSets _ _ (fst a) (fst b) i
|
||||||
, arrowIsSet _ _ (snd a) (snd b) i
|
, arrowsAreSets _ _ (snd a) (snd b) i
|
||||||
|
|
||||||
propArrowIsSet : isProp (∀ {A B} → isSet (Arrow A B))
|
propArrowIsSet : isProp (∀ {A B} → isSet (Arrow A B))
|
||||||
propArrowIsSet a b i = isSetIsProp a b i
|
propArrowIsSet a b i = isSetIsProp a b i
|
||||||
|
@ -129,9 +129,9 @@ module _ {ℓa ℓb : Level} {C : RawCategory ℓa ℓb} where
|
||||||
propIsInverseOf x y = λ i →
|
propIsInverseOf x y = λ i →
|
||||||
let
|
let
|
||||||
h : fst x ≡ fst y
|
h : fst x ≡ fst y
|
||||||
h = arrowIsSet _ _ (fst x) (fst y)
|
h = arrowsAreSets _ _ (fst x) (fst y)
|
||||||
hh : snd x ≡ snd y
|
hh : snd x ≡ snd y
|
||||||
hh = arrowIsSet _ _ (snd x) (snd y)
|
hh = arrowsAreSets _ _ (snd x) (snd y)
|
||||||
in h i , hh i
|
in h i , hh i
|
||||||
|
|
||||||
module _ {A B : Object} {f : Arrow A B} where
|
module _ {A B : Object} {f : Arrow A B} where
|
||||||
|
@ -183,7 +183,7 @@ module _ {ℓa ℓb : Level} {C : RawCategory ℓa ℓb} where
|
||||||
eqUni = foo Y.univalent
|
eqUni = foo Y.univalent
|
||||||
IC.isAssociative (done i) = propIsAssociative x X.isAssociative Y.isAssociative i
|
IC.isAssociative (done i) = propIsAssociative x X.isAssociative Y.isAssociative i
|
||||||
IC.isIdentity (done i) = isIdentity i
|
IC.isIdentity (done i) = isIdentity i
|
||||||
IC.arrowIsSet (done i) = propArrowIsSet x X.arrowIsSet Y.arrowIsSet i
|
IC.arrowsAreSets (done i) = propArrowIsSet x X.arrowsAreSets Y.arrowsAreSets i
|
||||||
IC.univalent (done i) = eqUni i
|
IC.univalent (done i) = eqUni i
|
||||||
|
|
||||||
propIsCategory : isProp (IsCategory C)
|
propIsCategory : isProp (IsCategory C)
|
||||||
|
@ -218,7 +218,7 @@ module _ {ℓa ℓb : Level} (ℂ : Category ℓa ℓb) where
|
||||||
OpIsCategory : IsCategory OpRaw
|
OpIsCategory : IsCategory OpRaw
|
||||||
IsCategory.isAssociative OpIsCategory = sym isAssociative
|
IsCategory.isAssociative OpIsCategory = sym isAssociative
|
||||||
IsCategory.isIdentity OpIsCategory = swap isIdentity
|
IsCategory.isIdentity OpIsCategory = swap isIdentity
|
||||||
IsCategory.arrowIsSet OpIsCategory = arrowIsSet
|
IsCategory.arrowsAreSets OpIsCategory = arrowsAreSets
|
||||||
IsCategory.univalent OpIsCategory = {!!}
|
IsCategory.univalent OpIsCategory = {!!}
|
||||||
|
|
||||||
Opposite : Category ℓa ℓb
|
Opposite : Category ℓa ℓb
|
||||||
|
@ -244,7 +244,7 @@ module _ {ℓa ℓb : Level} {ℂ : Category ℓa ℓb} where
|
||||||
rawIsCat : (i : I) → IsCategory (rawOp i)
|
rawIsCat : (i : I) → IsCategory (rawOp i)
|
||||||
isAssociative (rawIsCat i) = IsCat.isAssociative
|
isAssociative (rawIsCat i) = IsCat.isAssociative
|
||||||
isIdentity (rawIsCat i) = IsCat.isIdentity
|
isIdentity (rawIsCat i) = IsCat.isIdentity
|
||||||
arrowIsSet (rawIsCat i) = IsCat.arrowIsSet
|
arrowsAreSets (rawIsCat i) = IsCat.arrowsAreSets
|
||||||
univalent (rawIsCat i) = IsCat.univalent
|
univalent (rawIsCat i) = IsCat.univalent
|
||||||
|
|
||||||
Opposite-is-involution : Opposite (Opposite ℂ) ≡ ℂ
|
Opposite-is-involution : Opposite (Opposite ℂ) ≡ ℂ
|
||||||
|
|
|
@ -55,8 +55,8 @@ module _
|
||||||
|
|
||||||
propIsFunctor : isProp (IsFunctor _ _ F)
|
propIsFunctor : isProp (IsFunctor _ _ F)
|
||||||
propIsFunctor isF0 isF1 i = record
|
propIsFunctor isF0 isF1 i = record
|
||||||
{ isIdentity = 𝔻.arrowIsSet _ _ isF0.isIdentity isF1.isIdentity i
|
{ isIdentity = 𝔻.arrowsAreSets _ _ isF0.isIdentity isF1.isIdentity i
|
||||||
; distrib = 𝔻.arrowIsSet _ _ isF0.distrib isF1.distrib i
|
; distrib = 𝔻.arrowsAreSets _ _ isF0.distrib isF1.distrib i
|
||||||
}
|
}
|
||||||
where
|
where
|
||||||
module isF0 = IsFunctor isF0
|
module isF0 = IsFunctor isF0
|
||||||
|
|
Loading…
Reference in a new issue