Rename distrib to isDistributive

This commit is contained in:
Frederik Hanghøj Iversen 2018-02-23 12:53:35 +01:00
parent 7787a8f0be
commit 4874ed0795
4 changed files with 17 additions and 17 deletions

View file

@ -107,13 +107,13 @@ module _ { ' : Level} (unprovable : IsCategory (RawCat ')) where
proj₁ : Catt [ :product: , ]
proj₁ = record
{ raw = record { func* = fst ; func→ = fst }
; isFunctor = record { isIdentity = refl ; distrib = refl }
; isFunctor = record { isIdentity = refl ; isDistributive = refl }
}
proj₂ : Catt [ :product: , 𝔻 ]
proj₂ = record
{ raw = record { func* = snd ; func→ = snd }
; isFunctor = record { isIdentity = refl ; distrib = refl }
; isFunctor = record { isIdentity = refl ; isDistributive = refl }
}
module _ {X : Object Catt} (x₁ : Catt [ X , ]) (x₂ : Catt [ X , 𝔻 ]) where
@ -125,7 +125,7 @@ module _ { ' : Level} (unprovable : IsCategory (RawCat ')) where
}
; isFunctor = record
{ isIdentity = Σ≡ x₁.isIdentity x₂.isIdentity
; distrib = Σ≡ x₁.distrib x₂.distrib
; isDistributive = Σ≡ x₁.isDistributive x₂.isDistributive
}
}
where
@ -279,14 +279,14 @@ module _ ( : Level) (unprovable : IsCategory (RawCat )) where
ηθ = proj₁ ηθNT
ηθNat = proj₂ ηθNT
:distrib: :
:isDistributive: :
𝔻 [ 𝔻 [ η C θ C ] func→ F ( [ g f ] ) ]
𝔻 [ 𝔻 [ η C func→ G g ] 𝔻 [ θ B func→ F f ] ]
:distrib: = begin
:isDistributive: = begin
𝔻 [ (ηθ C) func→ F ( [ g f ]) ]
≡⟨ ηθNat ( [ g f ])
𝔻 [ func→ H ( [ g f ]) (ηθ A) ]
≡⟨ cong (λ φ 𝔻 [ φ ηθ A ]) (H.distrib)
≡⟨ cong (λ φ 𝔻 [ φ ηθ A ]) (H.isDistributive)
𝔻 [ 𝔻 [ func→ H g func→ H f ] (ηθ A) ]
≡⟨ sym isAssociative
𝔻 [ func→ H g 𝔻 [ func→ H f ηθ A ] ]
@ -314,7 +314,7 @@ module _ ( : Level) (unprovable : IsCategory (RawCat )) where
}
; isFunctor = record
{ isIdentity = λ {o} :ident: {o}
; distrib = λ {f u n k y} :distrib: {f} {u} {n} {k} {y}
; isDistributive = λ {f u n k y} :isDistributive: {f} {u} {n} {k} {y}
}
}

View file

@ -99,7 +99,7 @@ module _ {a b : Level} where
}
; isFunctor = record
{ isIdentity = funExt λ _ proj₂ isIdentity
; distrib = funExt λ x sym isAssociative
; isDistributive = funExt λ x sym isAssociative
}
}
where
@ -114,7 +114,7 @@ module _ {a b : Level} where
}
; isFunctor = record
{ isIdentity = funExt λ x proj₁ isIdentity
; distrib = funExt λ x isAssociative
; isDistributive = funExt λ x isAssociative
}
}
where

View file

@ -34,7 +34,7 @@ module _ {c c' d d'}
open RawFunctor F public
field
isIdentity : IsIdentity
distrib : IsDistributive
isDistributive : IsDistributive
record Functor : Set (c c' d d') where
field
@ -56,7 +56,7 @@ module _
propIsFunctor : isProp (IsFunctor _ _ F)
propIsFunctor isF0 isF1 i = record
{ isIdentity = 𝔻.arrowsAreSets _ _ isF0.isIdentity isF1.isIdentity i
; distrib = 𝔻.arrowsAreSets _ _ isF0.distrib isF1.distrib i
; isDistributive = 𝔻.arrowsAreSets _ _ isF0.isDistributive isF1.isDistributive i
}
where
module isF0 = IsFunctor isF0
@ -106,8 +106,8 @@ module _ { ' : Level} {A B C : Category '} (F : Functor B C) (G : F
dist : (F→ G→) (A [ α1 α0 ]) C [ (F→ G→) α1 (F→ G→) α0 ]
dist = begin
(F→ G→) (A [ α1 α0 ]) ≡⟨ refl
F→ (G→ (A [ α1 α0 ])) ≡⟨ cong F→ (distrib G)
F→ (B [ G→ α1 G→ α0 ]) ≡⟨ distrib F
F→ (G→ (A [ α1 α0 ])) ≡⟨ cong F→ (isDistributive G)
F→ (B [ G→ α1 G→ α0 ]) ≡⟨ isDistributive F
C [ (F→ G→) α1 (F→ G→) α0 ]
_∘fr_ : RawFunctor A C
@ -121,7 +121,7 @@ module _ { ' : Level} {A B C : Category '} (F : Functor B C) (G : F
F→ (G→ (𝟙 A)) ≡⟨ cong F→ (isIdentity G)
F→ (𝟙 B) ≡⟨ isIdentity F
𝟙 C
; distrib = dist
; isDistributive = dist
}
_∘f_ : Functor A C
@ -136,6 +136,6 @@ identity = record
}
; isFunctor = record
{ isIdentity = refl
; distrib = refl
; isDistributive = refl
}
}

View file

@ -88,6 +88,6 @@ module _ { : Level} { : Category } (unprovable : IsCategory (RawCat
}
; isFunctor = record
{ isIdentity = :ident:
; distrib = {!!}
; isDistributive = {!!}
}
}