Rename distrib
to isDistributive
This commit is contained in:
parent
7787a8f0be
commit
4874ed0795
|
@ -107,13 +107,13 @@ module _ {ℓ ℓ' : Level} (unprovable : IsCategory (RawCat ℓ ℓ')) where
|
|||
proj₁ : Catt [ :product: , ℂ ]
|
||||
proj₁ = record
|
||||
{ raw = record { func* = fst ; func→ = fst }
|
||||
; isFunctor = record { isIdentity = refl ; distrib = refl }
|
||||
; isFunctor = record { isIdentity = refl ; isDistributive = refl }
|
||||
}
|
||||
|
||||
proj₂ : Catt [ :product: , 𝔻 ]
|
||||
proj₂ = record
|
||||
{ raw = record { func* = snd ; func→ = snd }
|
||||
; isFunctor = record { isIdentity = refl ; distrib = refl }
|
||||
; isFunctor = record { isIdentity = refl ; isDistributive = refl }
|
||||
}
|
||||
|
||||
module _ {X : Object Catt} (x₁ : Catt [ X , ℂ ]) (x₂ : Catt [ X , 𝔻 ]) where
|
||||
|
@ -125,7 +125,7 @@ module _ {ℓ ℓ' : Level} (unprovable : IsCategory (RawCat ℓ ℓ')) where
|
|||
}
|
||||
; isFunctor = record
|
||||
{ isIdentity = Σ≡ x₁.isIdentity x₂.isIdentity
|
||||
; distrib = Σ≡ x₁.distrib x₂.distrib
|
||||
; isDistributive = Σ≡ x₁.isDistributive x₂.isDistributive
|
||||
}
|
||||
}
|
||||
where
|
||||
|
@ -279,14 +279,14 @@ module _ (ℓ : Level) (unprovable : IsCategory (RawCat ℓ ℓ)) where
|
|||
ηθ = proj₁ ηθNT
|
||||
ηθNat = proj₂ ηθNT
|
||||
|
||||
:distrib: :
|
||||
:isDistributive: :
|
||||
𝔻 [ 𝔻 [ η C ∘ θ C ] ∘ func→ F ( ℂ [ g ∘ f ] ) ]
|
||||
≡ 𝔻 [ 𝔻 [ η C ∘ func→ G g ] ∘ 𝔻 [ θ B ∘ func→ F f ] ]
|
||||
:distrib: = begin
|
||||
:isDistributive: = begin
|
||||
𝔻 [ (ηθ C) ∘ func→ F (ℂ [ g ∘ f ]) ]
|
||||
≡⟨ ηθNat (ℂ [ g ∘ f ]) ⟩
|
||||
𝔻 [ func→ H (ℂ [ g ∘ f ]) ∘ (ηθ A) ]
|
||||
≡⟨ cong (λ φ → 𝔻 [ φ ∘ ηθ A ]) (H.distrib) ⟩
|
||||
≡⟨ cong (λ φ → 𝔻 [ φ ∘ ηθ A ]) (H.isDistributive) ⟩
|
||||
𝔻 [ 𝔻 [ func→ H g ∘ func→ H f ] ∘ (ηθ A) ]
|
||||
≡⟨ sym isAssociative ⟩
|
||||
𝔻 [ func→ H g ∘ 𝔻 [ func→ H f ∘ ηθ A ] ]
|
||||
|
@ -314,7 +314,7 @@ module _ (ℓ : Level) (unprovable : IsCategory (RawCat ℓ ℓ)) where
|
|||
}
|
||||
; isFunctor = record
|
||||
{ isIdentity = λ {o} → :ident: {o}
|
||||
; distrib = λ {f u n k y} → :distrib: {f} {u} {n} {k} {y}
|
||||
; isDistributive = λ {f u n k y} → :isDistributive: {f} {u} {n} {k} {y}
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -99,7 +99,7 @@ module _ {ℓa ℓb : Level} where
|
|||
}
|
||||
; isFunctor = record
|
||||
{ isIdentity = funExt λ _ → proj₂ isIdentity
|
||||
; distrib = funExt λ x → sym isAssociative
|
||||
; isDistributive = funExt λ x → sym isAssociative
|
||||
}
|
||||
}
|
||||
where
|
||||
|
@ -114,7 +114,7 @@ module _ {ℓa ℓb : Level} where
|
|||
}
|
||||
; isFunctor = record
|
||||
{ isIdentity = funExt λ x → proj₁ isIdentity
|
||||
; distrib = funExt λ x → isAssociative
|
||||
; isDistributive = funExt λ x → isAssociative
|
||||
}
|
||||
}
|
||||
where
|
||||
|
|
|
@ -34,7 +34,7 @@ module _ {ℓc ℓc' ℓd ℓd'}
|
|||
open RawFunctor F public
|
||||
field
|
||||
isIdentity : IsIdentity
|
||||
distrib : IsDistributive
|
||||
isDistributive : IsDistributive
|
||||
|
||||
record Functor : Set (ℓc ⊔ ℓc' ⊔ ℓd ⊔ ℓd') where
|
||||
field
|
||||
|
@ -56,7 +56,7 @@ module _
|
|||
propIsFunctor : isProp (IsFunctor _ _ F)
|
||||
propIsFunctor isF0 isF1 i = record
|
||||
{ isIdentity = 𝔻.arrowsAreSets _ _ isF0.isIdentity isF1.isIdentity i
|
||||
; distrib = 𝔻.arrowsAreSets _ _ isF0.distrib isF1.distrib i
|
||||
; isDistributive = 𝔻.arrowsAreSets _ _ isF0.isDistributive isF1.isDistributive i
|
||||
}
|
||||
where
|
||||
module isF0 = IsFunctor isF0
|
||||
|
@ -106,8 +106,8 @@ module _ {ℓ ℓ' : Level} {A B C : Category ℓ ℓ'} (F : Functor B C) (G : F
|
|||
dist : (F→ ∘ G→) (A [ α1 ∘ α0 ]) ≡ C [ (F→ ∘ G→) α1 ∘ (F→ ∘ G→) α0 ]
|
||||
dist = begin
|
||||
(F→ ∘ G→) (A [ α1 ∘ α0 ]) ≡⟨ refl ⟩
|
||||
F→ (G→ (A [ α1 ∘ α0 ])) ≡⟨ cong F→ (distrib G) ⟩
|
||||
F→ (B [ G→ α1 ∘ G→ α0 ]) ≡⟨ distrib F ⟩
|
||||
F→ (G→ (A [ α1 ∘ α0 ])) ≡⟨ cong F→ (isDistributive G) ⟩
|
||||
F→ (B [ G→ α1 ∘ G→ α0 ]) ≡⟨ isDistributive F ⟩
|
||||
C [ (F→ ∘ G→) α1 ∘ (F→ ∘ G→) α0 ] ∎
|
||||
|
||||
_∘fr_ : RawFunctor A C
|
||||
|
@ -121,7 +121,7 @@ module _ {ℓ ℓ' : Level} {A B C : Category ℓ ℓ'} (F : Functor B C) (G : F
|
|||
F→ (G→ (𝟙 A)) ≡⟨ cong F→ (isIdentity G)⟩
|
||||
F→ (𝟙 B) ≡⟨ isIdentity F ⟩
|
||||
𝟙 C ∎
|
||||
; distrib = dist
|
||||
; isDistributive = dist
|
||||
}
|
||||
|
||||
_∘f_ : Functor A C
|
||||
|
@ -136,6 +136,6 @@ identity = record
|
|||
}
|
||||
; isFunctor = record
|
||||
{ isIdentity = refl
|
||||
; distrib = refl
|
||||
; isDistributive = refl
|
||||
}
|
||||
}
|
||||
|
|
|
@ -88,6 +88,6 @@ module _ {ℓ : Level} {ℂ : Category ℓ ℓ} (unprovable : IsCategory (RawCat
|
|||
}
|
||||
; isFunctor = record
|
||||
{ isIdentity = :ident:
|
||||
; distrib = {!!}
|
||||
; isDistributive = {!!}
|
||||
}
|
||||
}
|
||||
|
|
Loading…
Reference in a new issue