Merge remote-tracking branch 'Saizan/dev' into dev
This commit is contained in:
commit
4b9fe0f5bb
|
@ -348,7 +348,7 @@ module _ {ℓa ℓb : Level} (ℂ : RawCategory ℓa ℓb) where
|
||||||
coe refl f ≡⟨ id-coe ⟩
|
coe refl f ≡⟨ id-coe ⟩
|
||||||
f ≡⟨ sym rightIdentity ⟩
|
f ≡⟨ sym rightIdentity ⟩
|
||||||
f <<< identity ≡⟨ cong (f <<<_) (sym subst-neutral) ⟩
|
f <<< identity ≡⟨ cong (f <<<_) (sym subst-neutral) ⟩
|
||||||
f <<< _ ≡⟨ {!!} ⟩ _ ∎) a' p
|
f <<< _ ≡⟨⟩ _ ∎) a' p
|
||||||
|
|
||||||
module _ {b' : Object} (p : b ≡ b') where
|
module _ {b' : Object} (p : b ≡ b') where
|
||||||
private
|
private
|
||||||
|
@ -525,9 +525,9 @@ module _ {ℓa ℓb : Level} (ℂ : RawCategory ℓa ℓb) where
|
||||||
groupoidObject : isGrpd Object
|
groupoidObject : isGrpd Object
|
||||||
groupoidObject A B = res
|
groupoidObject A B = res
|
||||||
where
|
where
|
||||||
open import Data.Nat using (_≤_ ; z≤n ; s≤s)
|
open import Data.Nat using (_≤_ ; ≤′-refl ; ≤′-step)
|
||||||
setIso : ∀ x → isSet (Isomorphism x)
|
setIso : ∀ x → isSet (Isomorphism x)
|
||||||
setIso x = ntypeCommulative ((s≤s {n = 1} z≤n)) (propIsomorphism x)
|
setIso x = ntypeCumulative {n = 1} (≤′-step ≤′-refl) (propIsomorphism x)
|
||||||
step : isSet (A ≊ B)
|
step : isSet (A ≊ B)
|
||||||
step = setSig {sA = arrowsAreSets} {sB = setIso}
|
step = setSig {sA = arrowsAreSets} {sB = setIso}
|
||||||
res : isSet (A ≡ B)
|
res : isSet (A ≡ B)
|
||||||
|
|
|
@ -20,7 +20,7 @@
|
||||||
{-# OPTIONS --allow-unsolved-metas --cubical #-}
|
{-# OPTIONS --allow-unsolved-metas --cubical #-}
|
||||||
open import Cat.Prelude
|
open import Cat.Prelude
|
||||||
|
|
||||||
open import Data.Nat using (_≤_ ; z≤n ; s≤s)
|
open import Data.Nat using (_≤′_ ; ≤′-refl ; ≤′-step)
|
||||||
module Nat = Data.Nat
|
module Nat = Data.Nat
|
||||||
|
|
||||||
open import Cat.Category
|
open import Cat.Category
|
||||||
|
@ -112,8 +112,8 @@ module Properties where
|
||||||
|
|
||||||
naturalIsSet : (θ : Transformation F G) → isSet (Natural F G θ)
|
naturalIsSet : (θ : Transformation F G) → isSet (Natural F G θ)
|
||||||
naturalIsSet θ =
|
naturalIsSet θ =
|
||||||
ntypeCommulative
|
ntypeCumulative {n = 1}
|
||||||
(s≤s {n = Nat.suc Nat.zero} z≤n)
|
(Data.Nat.≤′-step Data.Nat.≤′-refl)
|
||||||
(naturalIsProp θ)
|
(naturalIsProp θ)
|
||||||
|
|
||||||
naturalTransformationIsSet : isSet (NaturalTransformation F G)
|
naturalTransformationIsSet : isSet (NaturalTransformation F G)
|
||||||
|
|
|
@ -1,42 +1,16 @@
|
||||||
{-# OPTIONS --allow-unsolved-metas #-}
|
{-# OPTIONS --allow-unsolved-metas #-}
|
||||||
module Cat.Wishlist where
|
module Cat.Wishlist where
|
||||||
|
|
||||||
open import Level hiding (suc)
|
open import Level hiding (suc; zero)
|
||||||
open import Cubical
|
open import Cubical
|
||||||
open import Cubical.NType
|
open import Cubical.NType
|
||||||
open import Data.Nat using (_≤_ ; z≤n ; s≤s ; zero ; suc)
|
open import Data.Nat using (_≤′_ ; ≤′-refl ; ≤′-step ; zero ; suc)
|
||||||
open import Agda.Builtin.Sigma
|
open import Agda.Builtin.Sigma
|
||||||
|
|
||||||
open import Cubical.NType.Properties
|
open import Cubical.NType.Properties
|
||||||
|
|
||||||
private
|
|
||||||
step : ∀ {ℓ} {A : Set ℓ} → isContr A → (x y : A) → isContr (x ≡ y)
|
|
||||||
step (a , contr) x y = {!p , c!}
|
|
||||||
-- where
|
|
||||||
-- p : x ≡ y
|
|
||||||
-- p = begin
|
|
||||||
-- x ≡⟨ sym (contr x) ⟩
|
|
||||||
-- a ≡⟨ contr y ⟩
|
|
||||||
-- y ∎
|
|
||||||
-- c : (q : x ≡ y) → p ≡ q
|
|
||||||
-- c q i j = contr (p {!!}) {!!}
|
|
||||||
|
|
||||||
-- Contractible types have any given homotopy level.
|
|
||||||
contrInitial : {ℓ : Level} {A : Set ℓ} → ∀ n → isContr A → HasLevel n A
|
|
||||||
contrInitial ⟨-2⟩ contr = contr
|
|
||||||
-- lem' (S ⟨-2⟩) (a , contr) = {!step!}
|
|
||||||
contrInitial (S ⟨-2⟩) (a , contr) x y = begin
|
|
||||||
x ≡⟨ sym (contr x) ⟩
|
|
||||||
a ≡⟨ contr y ⟩
|
|
||||||
y ∎
|
|
||||||
contrInitial (S (S n)) contr x y = {!lvl!} -- Why is this not well-founded?
|
|
||||||
where
|
|
||||||
c : isContr (x ≡ y)
|
|
||||||
c = step contr x y
|
|
||||||
lvl : HasLevel (S n) (x ≡ y)
|
|
||||||
lvl = contrInitial {A = x ≡ y} (S n) c
|
|
||||||
|
|
||||||
module _ {ℓ : Level} {A : Set ℓ} where
|
module _ {ℓ : Level} {A : Set ℓ} where
|
||||||
ntypeCommulative : ∀ {n m} → n ≤ m → HasLevel ⟨ n ⟩₋₂ A → HasLevel ⟨ m ⟩₋₂ A
|
ntypeCumulative : ∀ {n m} → n ≤′ m → HasLevel ⟨ n ⟩₋₂ A → HasLevel ⟨ m ⟩₋₂ A
|
||||||
ntypeCommulative {n = zero} {m} z≤n lvl = {!contrInitial ⟨ m ⟩₋₂ lvl!}
|
ntypeCumulative {m} ≤′-refl lvl = lvl
|
||||||
ntypeCommulative {n = .(suc _)} {.(suc _)} (s≤s x) lvl = {!!}
|
ntypeCumulative {n} {suc m} (≤′-step le) lvl = HasLevel+1 ⟨ m ⟩₋₂ (ntypeCumulative le lvl)
|
||||||
|
|
Loading…
Reference in a new issue