Decrease line-width
This commit is contained in:
parent
10c3c36305
commit
4e7506f06a
|
@ -658,14 +658,9 @@ module Opposite {ℓa ℓb : Level} where
|
||||||
open IsPreCategory isPreCategory
|
open IsPreCategory isPreCategory
|
||||||
|
|
||||||
module _ {A B : ℂ.Object} where
|
module _ {A B : ℂ.Object} where
|
||||||
k : TypeIsomorphism (ℂ.idToIso A B)
|
open Σ (toIso _ _ (ℂ.univalent {A} {B}))
|
||||||
k = toIso _ _ ℂ.univalent
|
renaming (fst to idToIso* ; snd to inv*)
|
||||||
open Σ k renaming (fst to η ; snd to inv-η)
|
open AreInverses {f = ℂ.idToIso A B} {idToIso*} inv*
|
||||||
open AreInverses {f = ℂ.idToIso A B} {η} inv-η
|
|
||||||
|
|
||||||
genericly : {ℓa ℓb ℓc : Level} {a : Set ℓa} {b : Set ℓb} {c : Set ℓc}
|
|
||||||
→ a × b × c → b × a × c
|
|
||||||
genericly (a , b , c) = (b , a , c)
|
|
||||||
|
|
||||||
shuffle : A ≊ B → A ℂ.≊ B
|
shuffle : A ≊ B → A ℂ.≊ B
|
||||||
shuffle (f , g , inv) = g , f , inv
|
shuffle (f , g , inv) = g , f , inv
|
||||||
|
@ -673,37 +668,38 @@ module Opposite {ℓa ℓb : Level} where
|
||||||
shuffle~ : A ℂ.≊ B → A ≊ B
|
shuffle~ : A ℂ.≊ B → A ≊ B
|
||||||
shuffle~ (f , g , inv) = g , f , inv
|
shuffle~ (f , g , inv) = g , f , inv
|
||||||
|
|
||||||
-- Shouldn't be necessary to use `arrowsAreSets` here, but we have it,
|
|
||||||
-- so why not?
|
|
||||||
lem : (p : A ≡ B) → idToIso A B p ≡ shuffle~ (ℂ.idToIso A B p)
|
lem : (p : A ≡ B) → idToIso A B p ≡ shuffle~ (ℂ.idToIso A B p)
|
||||||
lem p = isoEq refl
|
lem p = isoEq refl
|
||||||
|
|
||||||
ζ : A ≊ B → A ≡ B
|
isoToId* : A ≊ B → A ≡ B
|
||||||
ζ = η ∘ shuffle
|
isoToId* = idToIso* ∘ shuffle
|
||||||
|
|
||||||
-- inv : AreInverses (ℂ.idToIso A B) f
|
inv : AreInverses (idToIso A B) isoToId*
|
||||||
inv-ζ : AreInverses (idToIso A B) ζ
|
inv =
|
||||||
-- recto-verso : ℂ.idToIso A B <<< f ≡ idFun (A ℂ.≊ B)
|
( funExt (λ x → begin
|
||||||
inv-ζ = record
|
(isoToId* ∘ idToIso A B) x
|
||||||
{ fst = funExt (λ x → begin
|
≡⟨⟩
|
||||||
(ζ ∘ idToIso A B) x ≡⟨⟩
|
(idToIso* ∘ shuffle ∘ idToIso A B) x
|
||||||
(η ∘ shuffle ∘ idToIso A B) x ≡⟨ cong (λ φ → φ x) (cong (λ φ → η ∘ shuffle ∘ φ) (funExt lem)) ⟩
|
≡⟨ cong (λ φ → φ x) (cong (λ φ → idToIso* ∘ shuffle ∘ φ) (funExt lem)) ⟩
|
||||||
(η ∘ shuffle ∘ shuffle~ ∘ ℂ.idToIso A B) x ≡⟨⟩
|
(idToIso* ∘ shuffle ∘ shuffle~ ∘ ℂ.idToIso A B) x
|
||||||
(η ∘ ℂ.idToIso A B) x ≡⟨ (λ i → verso-recto i x) ⟩
|
≡⟨⟩
|
||||||
|
(idToIso* ∘ ℂ.idToIso A B) x
|
||||||
|
≡⟨ (λ i → verso-recto i x) ⟩
|
||||||
x ∎)
|
x ∎)
|
||||||
; snd = funExt (λ x → begin
|
, funExt (λ x → begin
|
||||||
(idToIso A B ∘ η ∘ shuffle) x ≡⟨ cong (λ φ → φ x) (cong (λ φ → φ ∘ η ∘ shuffle) (funExt lem)) ⟩
|
(idToIso A B ∘ idToIso* ∘ shuffle) x
|
||||||
(shuffle~ ∘ ℂ.idToIso A B ∘ η ∘ shuffle) x ≡⟨ cong (λ φ → φ x) (cong (λ φ → shuffle~ ∘ φ ∘ shuffle) recto-verso) ⟩
|
≡⟨ cong (λ φ → φ x) (cong (λ φ → φ ∘ idToIso* ∘ shuffle) (funExt lem)) ⟩
|
||||||
(shuffle~ ∘ shuffle) x ≡⟨⟩
|
(shuffle~ ∘ ℂ.idToIso A B ∘ idToIso* ∘ shuffle) x
|
||||||
|
≡⟨ cong (λ φ → φ x) (cong (λ φ → shuffle~ ∘ φ ∘ shuffle) recto-verso) ⟩
|
||||||
|
(shuffle~ ∘ shuffle) x
|
||||||
|
≡⟨⟩
|
||||||
x ∎)
|
x ∎)
|
||||||
}
|
)
|
||||||
|
|
||||||
h : TypeIsomorphism (idToIso A B)
|
|
||||||
h = ζ , inv-ζ
|
|
||||||
|
|
||||||
isCategory : IsCategory opRaw
|
isCategory : IsCategory opRaw
|
||||||
IsCategory.isPreCategory isCategory = isPreCategory
|
IsCategory.isPreCategory isCategory = isPreCategory
|
||||||
IsCategory.univalent isCategory = univalenceFromIsomorphism h
|
IsCategory.univalent isCategory
|
||||||
|
= univalenceFromIsomorphism (isoToId* , inv)
|
||||||
|
|
||||||
opposite : Category ℓa ℓb
|
opposite : Category ℓa ℓb
|
||||||
Category.raw opposite = opRaw
|
Category.raw opposite = opRaw
|
||||||
|
|
Loading…
Reference in a new issue