Decrease line-width

This commit is contained in:
Frederik Hanghøj Iversen 2018-05-08 14:50:45 +02:00
parent 10c3c36305
commit 4e7506f06a

View file

@ -658,14 +658,9 @@ module Opposite {a b : Level} where
open IsPreCategory isPreCategory open IsPreCategory isPreCategory
module _ {A B : .Object} where module _ {A B : .Object} where
k : TypeIsomorphism (.idToIso A B) open Σ (toIso _ _ (.univalent {A} {B}))
k = toIso _ _ .univalent renaming (fst to idToIso* ; snd to inv*)
open Σ k renaming (fst to η ; snd to inv-η) open AreInverses {f = .idToIso A B} {idToIso*} inv*
open AreInverses {f = .idToIso A B} {η} inv-η
genericly : {a b c : Level} {a : Set a} {b : Set b} {c : Set c}
a × b × c b × a × c
genericly (a , b , c) = (b , a , c)
shuffle : A B A .≊ B shuffle : A B A .≊ B
shuffle (f , g , inv) = g , f , inv shuffle (f , g , inv) = g , f , inv
@ -673,37 +668,38 @@ module Opposite {a b : Level} where
shuffle~ : A .≊ B A B shuffle~ : A .≊ B A B
shuffle~ (f , g , inv) = g , f , inv shuffle~ (f , g , inv) = g , f , inv
-- Shouldn't be necessary to use `arrowsAreSets` here, but we have it,
-- so why not?
lem : (p : A B) idToIso A B p shuffle~ (.idToIso A B p) lem : (p : A B) idToIso A B p shuffle~ (.idToIso A B p)
lem p = isoEq refl lem p = isoEq refl
ζ : A B A B isoToId* : A B A B
ζ = η shuffle isoToId* = idToIso* shuffle
-- inv : AreInverses (.idToIso A B) f inv : AreInverses (idToIso A B) isoToId*
inv-ζ : AreInverses (idToIso A B) ζ inv =
-- recto-verso : .idToIso A B <<< f ≡ idFun (A .≊ B) ( funExt (λ x begin
inv-ζ = record (isoToId* idToIso A B) x
{ fst = funExt (λ x begin ≡⟨⟩
(ζ idToIso A B) x ≡⟨⟩ (idToIso* shuffle idToIso A B) x
(η shuffle idToIso A B) x ≡⟨ cong (λ φ φ x) (cong (λ φ η shuffle φ) (funExt lem)) ≡⟨ cong (λ φ φ x) (cong (λ φ idToIso* shuffle φ) (funExt lem))
(η shuffle shuffle~ .idToIso A B) x ≡⟨⟩ (idToIso* shuffle shuffle~ .idToIso A B) x
(η .idToIso A B) x ≡⟨ (λ i verso-recto i x) ≡⟨⟩
(idToIso* .idToIso A B) x
≡⟨ (λ i verso-recto i x)
x ) x )
; snd = funExt (λ x begin , funExt (λ x begin
(idToIso A B η shuffle) x ≡⟨ cong (λ φ φ x) (cong (λ φ φ η shuffle) (funExt lem)) (idToIso A B idToIso* shuffle) x
(shuffle~ .idToIso A B η shuffle) x ≡⟨ cong (λ φ φ x) (cong (λ φ shuffle~ φ shuffle) recto-verso) ≡⟨ cong (λ φ φ x) (cong (λ φ φ idToIso* shuffle) (funExt lem))
(shuffle~ shuffle) x ≡⟨⟩ (shuffle~ .idToIso A B idToIso* shuffle) x
≡⟨ cong (λ φ φ x) (cong (λ φ shuffle~ φ shuffle) recto-verso)
(shuffle~ shuffle) x
≡⟨⟩
x ) x )
} )
h : TypeIsomorphism (idToIso A B)
h = ζ , inv-ζ
isCategory : IsCategory opRaw isCategory : IsCategory opRaw
IsCategory.isPreCategory isCategory = isPreCategory IsCategory.isPreCategory isCategory = isPreCategory
IsCategory.univalent isCategory = univalenceFromIsomorphism h IsCategory.univalent isCategory
= univalenceFromIsomorphism (isoToId* , inv)
opposite : Category a b opposite : Category a b
Category.raw opposite = opRaw Category.raw opposite = opRaw