diff --git a/src/Cat/Categories/Cat.agda b/src/Cat/Categories/Cat.agda index 95c0e15..8c29f7b 100644 --- a/src/Cat/Categories/Cat.agda +++ b/src/Cat/Categories/Cat.agda @@ -156,7 +156,7 @@ module _ {ℓ ℓ' : Level} (unprovable : IsCategory (RawCat ℓ ℓ')) where RawProduct.proj₁ rawProduct = P.proj₁ RawProduct.proj₂ rawProduct = P.proj₂ - isProduct : IsProduct Catℓ rawProduct + isProduct : IsProduct Catℓ _ _ rawProduct IsProduct.isProduct isProduct = P.isProduct product : Product Catℓ ℂ 𝔻 diff --git a/src/Cat/Categories/Sets.agda b/src/Cat/Categories/Sets.agda index adcbfc3..d5d92ec 100644 --- a/src/Cat/Categories/Sets.agda +++ b/src/Cat/Categories/Sets.agda @@ -70,7 +70,7 @@ module _ {ℓ : Level} where RawProduct.proj₁ rawProduct = Data.Product.proj₁ RawProduct.proj₂ rawProduct = Data.Product.proj₂ - isProduct : IsProduct 𝓢 rawProduct + isProduct : IsProduct 𝓢 _ _ rawProduct IsProduct.isProduct isProduct {X = X} f g = (f &&& g) , lem {0X = X} f g diff --git a/src/Cat/Category/Product.agda b/src/Cat/Category/Product.agda index 6dadf74..263f06d 100644 --- a/src/Cat/Category/Product.agda +++ b/src/Cat/Category/Product.agda @@ -10,30 +10,31 @@ module _ {ℓa ℓb : Level} (ℂ : Category ℓa ℓb) where open Category ℂ - record RawProduct (A B : Object) : Set (ℓa ⊔ ℓb) where - no-eta-equality - field - obj : Object - proj₁ : ℂ [ obj , A ] - proj₂ : ℂ [ obj , B ] + module _ (A B : Object) where + record RawProduct : Set (ℓa ⊔ ℓb) where + no-eta-equality + field + obj : Object + proj₁ : ℂ [ obj , A ] + proj₂ : ℂ [ obj , B ] - record IsProduct {A B : Object} (raw : RawProduct A B) : Set (ℓa ⊔ ℓb) where - open RawProduct raw public - field - isProduct : ∀ {X : Object} (x₁ : ℂ [ X , A ]) (x₂ : ℂ [ X , B ]) - → ∃![ x ] (ℂ [ proj₁ ∘ x ] ≡ x₁ P.× ℂ [ proj₂ ∘ x ] ≡ x₂) + record IsProduct (raw : RawProduct) : Set (ℓa ⊔ ℓb) where + open RawProduct raw public + field + isProduct : ∀ {X : Object} (x₁ : ℂ [ X , A ]) (x₂ : ℂ [ X , B ]) + → ∃![ x ] (ℂ [ proj₁ ∘ x ] ≡ x₁ P.× ℂ [ proj₂ ∘ x ] ≡ x₂) - -- | Arrow product - _P[_×_] : ∀ {X} → (π₁ : ℂ [ X , A ]) (π₂ : ℂ [ X , B ]) - → ℂ [ X , obj ] - _P[_×_] π₁ π₂ = P.proj₁ (isProduct π₁ π₂) + -- | Arrow product + _P[_×_] : ∀ {X} → (π₁ : ℂ [ X , A ]) (π₂ : ℂ [ X , B ]) + → ℂ [ X , obj ] + _P[_×_] π₁ π₂ = P.proj₁ (isProduct π₁ π₂) - record Product (A B : Object) : Set (ℓa ⊔ ℓb) where - field - raw : RawProduct A B - isProduct : IsProduct {A} {B} raw + record Product : Set (ℓa ⊔ ℓb) where + field + raw : RawProduct + isProduct : IsProduct raw - open IsProduct isProduct public + open IsProduct isProduct public record HasProducts : Set (ℓa ⊔ ℓb) where field