[QED] Get equivalence from 3rd formulation
This commit is contained in:
parent
c23c2716a5
commit
4ff8f155ab
|
@ -150,11 +150,11 @@ record RawCategory (ℓa ℓb : Level) : Set (lsuc (ℓa ⊔ ℓb)) where
|
||||||
lem : Σ Object (A ≅_) ≃ Σ Object (A ≡_)
|
lem : Σ Object (A ≅_) ≃ Σ Object (A ≡_)
|
||||||
lem = equivSig {ℓa} {ℓb} {Object} {A ≅_} {_} {A ≡_} (f A)
|
lem = equivSig {ℓa} {ℓb} {Object} {A ≅_} {_} {A ≡_} (f A)
|
||||||
|
|
||||||
aux : isContr (Σ[ B ∈ Object ] A ≡ B)
|
aux : isContr (Σ Object (A ≡_))
|
||||||
aux = {!Σ Object (A ≡_)!}
|
aux = (A , refl) , (λ y → contrSingl (snd y))
|
||||||
|
|
||||||
step : isContr (Σ Object (A ≅_))
|
step : isContr (Σ Object (A ≅_))
|
||||||
step = {!subst {P = isContr} {!!} aux!}
|
step = equivPreservesNType {n = ⟨-2⟩} (Equivalence.symmetry lem) aux
|
||||||
|
|
||||||
propUnivalent : isProp Univalent
|
propUnivalent : isProp Univalent
|
||||||
propUnivalent a b i = propPi (λ iso → propIsContr) a b i
|
propUnivalent a b i = propPi (λ iso → propIsContr) a b i
|
||||||
|
|
Loading…
Reference in a new issue