Clean-up in the category of categories
This commit is contained in:
parent
d01514cbdb
commit
52297d9073
|
@ -4,9 +4,11 @@
|
|||
module Cat.Categories.Cat where
|
||||
|
||||
open import Agda.Primitive
|
||||
open import Cubical
|
||||
open import Data.Product renaming (proj₁ to fst ; proj₂ to snd)
|
||||
|
||||
open import Cubical
|
||||
open import Cubical.Sigma
|
||||
|
||||
open import Cat.Category
|
||||
open import Cat.Category.Functor
|
||||
open import Cat.Category.Product
|
||||
|
@ -46,21 +48,30 @@ module _ (ℓ ℓ' : Level) where
|
|||
isAssociative {f = F} {G} {H} = assc {F = F} {G = G} {H = H}
|
||||
ident : IsIdentity identity
|
||||
ident = ident-r , ident-l
|
||||
-- NB! `ArrowsAreSets RawCat` is *not* provable. The type of functors,
|
||||
-- however, form a groupoid! Therefore there is no (1-)category of
|
||||
-- categories. There does, however, exist a 2-category of 1-categories.
|
||||
|
||||
-- Because of the note above there is not category of categories.
|
||||
-- NB! `ArrowsAreSets RawCat` is *not* provable. The type of functors,
|
||||
-- however, form a groupoid! Therefore there is no (1-)category of
|
||||
-- categories. There does, however, exist a 2-category of 1-categories.
|
||||
--
|
||||
-- Because of this there is no category of categories.
|
||||
Cat : (unprovable : IsCategory RawCat) → Category (lsuc (ℓ ⊔ ℓ')) (ℓ ⊔ ℓ')
|
||||
Category.raw (Cat _) = RawCat
|
||||
Category.isCategory (Cat unprovable) = unprovable
|
||||
-- Category.raw Cat _ = RawCat
|
||||
-- Category.isCategory Cat unprovable = unprovable
|
||||
|
||||
-- The following to some extend depends on the category of categories being a
|
||||
-- category. In some places it may not actually be needed, however.
|
||||
-- | In the following we will pretend there is a category of categories when
|
||||
-- e.g. talking about it being cartesian closed. It still makes sense to
|
||||
-- construct these things even though that category does not exist.
|
||||
--
|
||||
-- If the notion of a category is later generalized to work on different
|
||||
-- homotopy levels, then the proof that the category of categories is cartesian
|
||||
-- closed will follow immediately from these constructions.
|
||||
|
||||
-- | the category of categories have products.
|
||||
module CatProduct {ℓ ℓ' : Level} (ℂ 𝔻 : Category ℓ ℓ') where
|
||||
private
|
||||
module ℂ = Category ℂ
|
||||
module 𝔻 = Category 𝔻
|
||||
|
||||
Obj = Object ℂ × Object 𝔻
|
||||
Arr : Obj → Obj → Set ℓ'
|
||||
Arr (c , d) (c' , d') = ℂ [ c , c' ] × 𝔻 [ d , d' ]
|
||||
|
@ -80,9 +91,6 @@ module CatProduct {ℓ ℓ' : Level} (ℂ 𝔻 : Category ℓ ℓ') where
|
|||
RawCategory._∘_ rawProduct = _∘_
|
||||
open RawCategory rawProduct
|
||||
|
||||
module ℂ = Category ℂ
|
||||
module 𝔻 = Category 𝔻
|
||||
open import Cubical.Sigma
|
||||
arrowsAreSets : ArrowsAreSets
|
||||
arrowsAreSets = setSig {sA = ℂ.arrowsAreSets} {sB = λ x → 𝔻.arrowsAreSets}
|
||||
isIdentity : IsIdentity 𝟙'
|
||||
|
@ -97,31 +105,35 @@ module CatProduct {ℓ ℓ' : Level} (ℂ 𝔻 : Category ℓ ℓ') where
|
|||
IsCategory.arrowsAreSets isCategory = arrowsAreSets
|
||||
IsCategory.univalent isCategory = univalent
|
||||
|
||||
obj : Category ℓ ℓ'
|
||||
Category.raw obj = rawProduct
|
||||
object : Category ℓ ℓ'
|
||||
Category.raw object = rawProduct
|
||||
|
||||
proj₁ : Functor obj ℂ
|
||||
proj₁ : Functor object ℂ
|
||||
proj₁ = record
|
||||
{ raw = record { omap = fst ; fmap = fst }
|
||||
; isFunctor = record { isIdentity = refl ; isDistributive = refl }
|
||||
{ raw = record
|
||||
{ omap = fst ; fmap = fst }
|
||||
; isFunctor = record
|
||||
{ isIdentity = refl ; isDistributive = refl }
|
||||
}
|
||||
|
||||
proj₂ : Functor obj 𝔻
|
||||
proj₂ : Functor object 𝔻
|
||||
proj₂ = record
|
||||
{ raw = record { omap = snd ; fmap = snd }
|
||||
; isFunctor = record { isIdentity = refl ; isDistributive = refl }
|
||||
{ raw = record
|
||||
{ omap = snd ; fmap = snd }
|
||||
; isFunctor = record
|
||||
{ isIdentity = refl ; isDistributive = refl }
|
||||
}
|
||||
|
||||
module _ {X : Category ℓ ℓ'} (x₁ : Functor X ℂ) (x₂ : Functor X 𝔻) where
|
||||
private
|
||||
x : Functor X obj
|
||||
x : Functor X object
|
||||
x = record
|
||||
{ raw = record
|
||||
{ omap = λ x → x₁.omap x , x₂.omap x
|
||||
; fmap = λ x → x₁.fmap x , x₂.fmap x
|
||||
}
|
||||
; isFunctor = record
|
||||
{ isIdentity = Σ≡ x₁.isIdentity x₂.isIdentity
|
||||
{ isIdentity = Σ≡ x₁.isIdentity x₂.isIdentity
|
||||
; isDistributive = Σ≡ x₁.isDistributive x₂.isDistributive
|
||||
}
|
||||
}
|
||||
|
@ -150,7 +162,7 @@ module _ {ℓ ℓ' : Level} (unprovable : IsCategory (RawCat ℓ ℓ')) where
|
|||
module P = CatProduct ℂ 𝔻
|
||||
|
||||
rawProduct : RawProduct Catℓ ℂ 𝔻
|
||||
RawProduct.object rawProduct = P.obj
|
||||
RawProduct.object rawProduct = P.object
|
||||
RawProduct.proj₁ rawProduct = P.proj₁
|
||||
RawProduct.proj₂ rawProduct = P.proj₂
|
||||
|
||||
|
@ -165,24 +177,23 @@ module _ {ℓ ℓ' : Level} (unprovable : IsCategory (RawCat ℓ ℓ')) where
|
|||
hasProducts : HasProducts Catℓ
|
||||
hasProducts = record { product = product }
|
||||
|
||||
-- Basically proves that `Cat ℓ ℓ` is cartesian closed.
|
||||
-- | The category of categories have expoentntials - and because it has products
|
||||
-- it is therefory also cartesian closed.
|
||||
module CatExponential {ℓ : Level} (ℂ 𝔻 : Category ℓ ℓ) where
|
||||
private
|
||||
open Data.Product
|
||||
open import Cat.Categories.Fun
|
||||
module ℂ = Category ℂ
|
||||
module 𝔻 = Category 𝔻
|
||||
Categoryℓ = Category ℓ ℓ
|
||||
open Fun ℂ 𝔻 renaming (identity to idN)
|
||||
|
||||
Categoryℓ = Category ℓ ℓ
|
||||
open Fun ℂ 𝔻 renaming (identity to idN)
|
||||
private
|
||||
omap : Functor ℂ 𝔻 × Object ℂ → Object 𝔻
|
||||
omap (F , A) = F.omap A
|
||||
where
|
||||
module F = Functor F
|
||||
omap (F , A) = Functor.omap F A
|
||||
|
||||
prodObj : Categoryℓ
|
||||
prodObj = Fun
|
||||
-- The exponential object
|
||||
object : Categoryℓ
|
||||
object = Fun
|
||||
|
||||
module _ {dom cod : Functor ℂ 𝔻 × Object ℂ} where
|
||||
private
|
||||
|
@ -215,15 +226,10 @@ module CatExponential {ℓ : Level} (ℂ 𝔻 : Category ℓ ℓ) where
|
|||
l = 𝔻 [ θB ∘ F.fmap f ]
|
||||
r : 𝔻 [ F.omap A , G.omap B ]
|
||||
r = 𝔻 [ G.fmap f ∘ θA ]
|
||||
-- There are two choices at this point,
|
||||
-- but I suppose the whole point is that
|
||||
-- by `θNat f` we have `l ≡ r`
|
||||
-- lem : 𝔻 [ θ B ∘ F .fmap f ] ≡ 𝔻 [ G .fmap f ∘ θ A ]
|
||||
-- lem = θNat f
|
||||
result : 𝔻 [ F.omap A , G.omap B ]
|
||||
result = l
|
||||
|
||||
open CatProduct renaming (obj to _×p_) using ()
|
||||
open CatProduct renaming (object to _⊗_) using ()
|
||||
|
||||
module _ {c : Functor ℂ 𝔻 × Object ℂ} where
|
||||
private
|
||||
|
@ -234,7 +240,7 @@ module CatExponential {ℓ : Level} (ℂ 𝔻 : Category ℓ ℓ) where
|
|||
|
||||
ident : fmap {c} {c} (NT.identity F , 𝟙 ℂ {A = proj₂ c}) ≡ 𝟙 𝔻
|
||||
ident = begin
|
||||
fmap {c} {c} (𝟙 (prodObj ×p ℂ) {c}) ≡⟨⟩
|
||||
fmap {c} {c} (𝟙 (object ⊗ ℂ) {c}) ≡⟨⟩
|
||||
fmap {c} {c} (idN F , 𝟙 ℂ) ≡⟨⟩
|
||||
𝔻 [ identityTrans F C ∘ F.fmap (𝟙 ℂ)] ≡⟨⟩
|
||||
𝔻 [ 𝟙 𝔻 ∘ F.fmap (𝟙 ℂ)] ≡⟨ proj₂ 𝔻.isIdentity ⟩
|
||||
|
@ -254,8 +260,6 @@ module CatExponential {ℓ : Level} (ℂ 𝔻 : Category ℓ ℓ) where
|
|||
module F = Functor F
|
||||
module G = Functor G
|
||||
module H = Functor H
|
||||
-- Not entirely clear what this is at this point:
|
||||
_P⊕_ = Category._∘_ (prodObj ×p ℂ) {F×A} {G×B} {H×C}
|
||||
|
||||
module _
|
||||
-- NaturalTransformation F G × ℂ .Arrow A B
|
||||
|
@ -305,7 +309,7 @@ module CatExponential {ℓ : Level} (ℂ 𝔻 : Category ℓ ℓ) where
|
|||
≡⟨ cong (λ φ → 𝔻 [ 𝔻 [ η C ∘ G.fmap g ] ∘ φ ]) (sym (θNat f)) ⟩
|
||||
𝔻 [ 𝔻 [ η C ∘ G.fmap g ] ∘ 𝔻 [ θ B ∘ F.fmap f ] ] ∎
|
||||
|
||||
eval : Functor (CatProduct.obj prodObj ℂ) 𝔻
|
||||
eval : Functor (CatProduct.object object ℂ) 𝔻
|
||||
eval = record
|
||||
{ raw = record
|
||||
{ omap = omap
|
||||
|
@ -317,14 +321,12 @@ module CatExponential {ℓ : Level} (ℂ 𝔻 : Category ℓ ℓ) where
|
|||
}
|
||||
}
|
||||
|
||||
module _ (𝔸 : Category ℓ ℓ) (F : Functor (𝔸 ×p ℂ) 𝔻) where
|
||||
-- open HasProducts (hasProducts {ℓ} {ℓ} unprovable) renaming (_|×|_ to parallelProduct)
|
||||
|
||||
module _ (𝔸 : Category ℓ ℓ) (F : Functor (𝔸 ⊗ ℂ) 𝔻) where
|
||||
postulate
|
||||
parallelProduct
|
||||
: Functor 𝔸 prodObj → Functor ℂ ℂ
|
||||
→ Functor (𝔸 ×p ℂ) (prodObj ×p ℂ)
|
||||
transpose : Functor 𝔸 prodObj
|
||||
: Functor 𝔸 object → Functor ℂ ℂ
|
||||
→ Functor (𝔸 ⊗ ℂ) (object ⊗ ℂ)
|
||||
transpose : Functor 𝔸 object
|
||||
eq : F[ eval ∘ (parallelProduct transpose (identity {C = ℂ})) ] ≡ F
|
||||
-- eq : F[ :eval: ∘ {!!} ] ≡ F
|
||||
-- eq : Catℓ [ :eval: ∘ (HasProducts._|×|_ hasProducts transpose (𝟙 Catℓ {o = ℂ})) ] ≡ F
|
||||
|
@ -339,39 +341,30 @@ module CatExponential {ℓ : Level} (ℂ 𝔻 : Category ℓ ℓ) where
|
|||
-- :eval: ∘ (parallelProduct F~ (𝟙 Catℓ {o = ℂ}))] ≡ F) catTranspose =
|
||||
-- transpose , eq
|
||||
|
||||
-- We don't care about filling out the holes below since they are anyways hidden
|
||||
-- behind an unprovable statement.
|
||||
module _ (ℓ : Level) (unprovable : IsCategory (RawCat ℓ ℓ)) where
|
||||
private
|
||||
Catℓ : Category (lsuc (ℓ ⊔ ℓ)) (ℓ ⊔ ℓ)
|
||||
Catℓ = Cat ℓ ℓ unprovable
|
||||
module _ (ℂ 𝔻 : Category ℓ ℓ) where
|
||||
open CatExponential ℂ 𝔻 using (prodObj ; eval)
|
||||
-- Putting in the type annotation causes Agda to loop indefinitely.
|
||||
-- eval' : Functor (CatProduct.obj prodObj ℂ) 𝔻
|
||||
-- Likewise, using it below also results in this.
|
||||
eval' : _
|
||||
eval' = eval
|
||||
-- private
|
||||
-- -- module _ (ℂ 𝔻 : Category ℓ ℓ) where
|
||||
-- postulate :isExponential: : IsExponential Catℓ ℂ 𝔻 prodObj :eval:
|
||||
-- -- :isExponential: : IsExponential Catℓ ℂ 𝔻 :obj: :eval:
|
||||
-- -- :isExponential: = {!catTranspose!}
|
||||
-- -- where
|
||||
-- -- open HasProducts (hasProducts {ℓ} {ℓ} unprovable) using (_|×|_)
|
||||
-- -- :isExponential: = λ 𝔸 F → transpose 𝔸 F , eq' 𝔸 F
|
||||
|
||||
-- -- :exponent: : Exponential (Cat ℓ ℓ) A B
|
||||
exponent : Exponential Catℓ ℂ 𝔻
|
||||
exponent = record
|
||||
{ obj = prodObj
|
||||
; eval = {!evalll'!}
|
||||
; isExponential = {!:isExponential:!}
|
||||
}
|
||||
where
|
||||
open HasProducts (hasProducts unprovable) renaming (_×_ to _×p_)
|
||||
open import Cat.Categories.Fun
|
||||
open Fun
|
||||
-- _×p_ = CatProduct.obj -- prodObj ℂ
|
||||
-- eval' : Functor CatP.obj 𝔻
|
||||
module _ (ℂ 𝔻 : Category ℓ ℓ) where
|
||||
module CatExp = CatExponential ℂ 𝔻
|
||||
_⊗_ = CatProduct.object
|
||||
|
||||
-- Filling the hole causes Agda to loop indefinitely.
|
||||
eval : Functor (CatExp.object ⊗ ℂ) 𝔻
|
||||
eval = {!CatExp.eval!}
|
||||
|
||||
isExponential : IsExponential Catℓ ℂ 𝔻 CatExp.object eval
|
||||
isExponential = {!CatExp.isExponential!}
|
||||
|
||||
exponent : Exponential Catℓ ℂ 𝔻
|
||||
exponent = record
|
||||
{ obj = CatExp.object
|
||||
; eval = eval
|
||||
; isExponential = isExponential
|
||||
}
|
||||
|
||||
hasExponentials : HasExponentials Catℓ
|
||||
hasExponentials = record { exponent = exponent }
|
||||
|
|
Loading…
Reference in a new issue