Clean-up in the category of categories
This commit is contained in:
parent
d01514cbdb
commit
52297d9073
|
@ -4,9 +4,11 @@
|
||||||
module Cat.Categories.Cat where
|
module Cat.Categories.Cat where
|
||||||
|
|
||||||
open import Agda.Primitive
|
open import Agda.Primitive
|
||||||
open import Cubical
|
|
||||||
open import Data.Product renaming (proj₁ to fst ; proj₂ to snd)
|
open import Data.Product renaming (proj₁ to fst ; proj₂ to snd)
|
||||||
|
|
||||||
|
open import Cubical
|
||||||
|
open import Cubical.Sigma
|
||||||
|
|
||||||
open import Cat.Category
|
open import Cat.Category
|
||||||
open import Cat.Category.Functor
|
open import Cat.Category.Functor
|
||||||
open import Cat.Category.Product
|
open import Cat.Category.Product
|
||||||
|
@ -46,21 +48,30 @@ module _ (ℓ ℓ' : Level) where
|
||||||
isAssociative {f = F} {G} {H} = assc {F = F} {G = G} {H = H}
|
isAssociative {f = F} {G} {H} = assc {F = F} {G = G} {H = H}
|
||||||
ident : IsIdentity identity
|
ident : IsIdentity identity
|
||||||
ident = ident-r , ident-l
|
ident = ident-r , ident-l
|
||||||
-- NB! `ArrowsAreSets RawCat` is *not* provable. The type of functors,
|
|
||||||
-- however, form a groupoid! Therefore there is no (1-)category of
|
|
||||||
-- categories. There does, however, exist a 2-category of 1-categories.
|
|
||||||
|
|
||||||
-- Because of the note above there is not category of categories.
|
-- NB! `ArrowsAreSets RawCat` is *not* provable. The type of functors,
|
||||||
|
-- however, form a groupoid! Therefore there is no (1-)category of
|
||||||
|
-- categories. There does, however, exist a 2-category of 1-categories.
|
||||||
|
--
|
||||||
|
-- Because of this there is no category of categories.
|
||||||
Cat : (unprovable : IsCategory RawCat) → Category (lsuc (ℓ ⊔ ℓ')) (ℓ ⊔ ℓ')
|
Cat : (unprovable : IsCategory RawCat) → Category (lsuc (ℓ ⊔ ℓ')) (ℓ ⊔ ℓ')
|
||||||
Category.raw (Cat _) = RawCat
|
Category.raw (Cat _) = RawCat
|
||||||
Category.isCategory (Cat unprovable) = unprovable
|
Category.isCategory (Cat unprovable) = unprovable
|
||||||
-- Category.raw Cat _ = RawCat
|
|
||||||
-- Category.isCategory Cat unprovable = unprovable
|
|
||||||
|
|
||||||
-- The following to some extend depends on the category of categories being a
|
-- | In the following we will pretend there is a category of categories when
|
||||||
-- category. In some places it may not actually be needed, however.
|
-- e.g. talking about it being cartesian closed. It still makes sense to
|
||||||
|
-- construct these things even though that category does not exist.
|
||||||
|
--
|
||||||
|
-- If the notion of a category is later generalized to work on different
|
||||||
|
-- homotopy levels, then the proof that the category of categories is cartesian
|
||||||
|
-- closed will follow immediately from these constructions.
|
||||||
|
|
||||||
|
-- | the category of categories have products.
|
||||||
module CatProduct {ℓ ℓ' : Level} (ℂ 𝔻 : Category ℓ ℓ') where
|
module CatProduct {ℓ ℓ' : Level} (ℂ 𝔻 : Category ℓ ℓ') where
|
||||||
private
|
private
|
||||||
|
module ℂ = Category ℂ
|
||||||
|
module 𝔻 = Category 𝔻
|
||||||
|
|
||||||
Obj = Object ℂ × Object 𝔻
|
Obj = Object ℂ × Object 𝔻
|
||||||
Arr : Obj → Obj → Set ℓ'
|
Arr : Obj → Obj → Set ℓ'
|
||||||
Arr (c , d) (c' , d') = ℂ [ c , c' ] × 𝔻 [ d , d' ]
|
Arr (c , d) (c' , d') = ℂ [ c , c' ] × 𝔻 [ d , d' ]
|
||||||
|
@ -80,9 +91,6 @@ module CatProduct {ℓ ℓ' : Level} (ℂ 𝔻 : Category ℓ ℓ') where
|
||||||
RawCategory._∘_ rawProduct = _∘_
|
RawCategory._∘_ rawProduct = _∘_
|
||||||
open RawCategory rawProduct
|
open RawCategory rawProduct
|
||||||
|
|
||||||
module ℂ = Category ℂ
|
|
||||||
module 𝔻 = Category 𝔻
|
|
||||||
open import Cubical.Sigma
|
|
||||||
arrowsAreSets : ArrowsAreSets
|
arrowsAreSets : ArrowsAreSets
|
||||||
arrowsAreSets = setSig {sA = ℂ.arrowsAreSets} {sB = λ x → 𝔻.arrowsAreSets}
|
arrowsAreSets = setSig {sA = ℂ.arrowsAreSets} {sB = λ x → 𝔻.arrowsAreSets}
|
||||||
isIdentity : IsIdentity 𝟙'
|
isIdentity : IsIdentity 𝟙'
|
||||||
|
@ -97,31 +105,35 @@ module CatProduct {ℓ ℓ' : Level} (ℂ 𝔻 : Category ℓ ℓ') where
|
||||||
IsCategory.arrowsAreSets isCategory = arrowsAreSets
|
IsCategory.arrowsAreSets isCategory = arrowsAreSets
|
||||||
IsCategory.univalent isCategory = univalent
|
IsCategory.univalent isCategory = univalent
|
||||||
|
|
||||||
obj : Category ℓ ℓ'
|
object : Category ℓ ℓ'
|
||||||
Category.raw obj = rawProduct
|
Category.raw object = rawProduct
|
||||||
|
|
||||||
proj₁ : Functor obj ℂ
|
proj₁ : Functor object ℂ
|
||||||
proj₁ = record
|
proj₁ = record
|
||||||
{ raw = record { omap = fst ; fmap = fst }
|
{ raw = record
|
||||||
; isFunctor = record { isIdentity = refl ; isDistributive = refl }
|
{ omap = fst ; fmap = fst }
|
||||||
|
; isFunctor = record
|
||||||
|
{ isIdentity = refl ; isDistributive = refl }
|
||||||
}
|
}
|
||||||
|
|
||||||
proj₂ : Functor obj 𝔻
|
proj₂ : Functor object 𝔻
|
||||||
proj₂ = record
|
proj₂ = record
|
||||||
{ raw = record { omap = snd ; fmap = snd }
|
{ raw = record
|
||||||
; isFunctor = record { isIdentity = refl ; isDistributive = refl }
|
{ omap = snd ; fmap = snd }
|
||||||
|
; isFunctor = record
|
||||||
|
{ isIdentity = refl ; isDistributive = refl }
|
||||||
}
|
}
|
||||||
|
|
||||||
module _ {X : Category ℓ ℓ'} (x₁ : Functor X ℂ) (x₂ : Functor X 𝔻) where
|
module _ {X : Category ℓ ℓ'} (x₁ : Functor X ℂ) (x₂ : Functor X 𝔻) where
|
||||||
private
|
private
|
||||||
x : Functor X obj
|
x : Functor X object
|
||||||
x = record
|
x = record
|
||||||
{ raw = record
|
{ raw = record
|
||||||
{ omap = λ x → x₁.omap x , x₂.omap x
|
{ omap = λ x → x₁.omap x , x₂.omap x
|
||||||
; fmap = λ x → x₁.fmap x , x₂.fmap x
|
; fmap = λ x → x₁.fmap x , x₂.fmap x
|
||||||
}
|
}
|
||||||
; isFunctor = record
|
; isFunctor = record
|
||||||
{ isIdentity = Σ≡ x₁.isIdentity x₂.isIdentity
|
{ isIdentity = Σ≡ x₁.isIdentity x₂.isIdentity
|
||||||
; isDistributive = Σ≡ x₁.isDistributive x₂.isDistributive
|
; isDistributive = Σ≡ x₁.isDistributive x₂.isDistributive
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -150,7 +162,7 @@ module _ {ℓ ℓ' : Level} (unprovable : IsCategory (RawCat ℓ ℓ')) where
|
||||||
module P = CatProduct ℂ 𝔻
|
module P = CatProduct ℂ 𝔻
|
||||||
|
|
||||||
rawProduct : RawProduct Catℓ ℂ 𝔻
|
rawProduct : RawProduct Catℓ ℂ 𝔻
|
||||||
RawProduct.object rawProduct = P.obj
|
RawProduct.object rawProduct = P.object
|
||||||
RawProduct.proj₁ rawProduct = P.proj₁
|
RawProduct.proj₁ rawProduct = P.proj₁
|
||||||
RawProduct.proj₂ rawProduct = P.proj₂
|
RawProduct.proj₂ rawProduct = P.proj₂
|
||||||
|
|
||||||
|
@ -165,24 +177,23 @@ module _ {ℓ ℓ' : Level} (unprovable : IsCategory (RawCat ℓ ℓ')) where
|
||||||
hasProducts : HasProducts Catℓ
|
hasProducts : HasProducts Catℓ
|
||||||
hasProducts = record { product = product }
|
hasProducts = record { product = product }
|
||||||
|
|
||||||
-- Basically proves that `Cat ℓ ℓ` is cartesian closed.
|
-- | The category of categories have expoentntials - and because it has products
|
||||||
|
-- it is therefory also cartesian closed.
|
||||||
module CatExponential {ℓ : Level} (ℂ 𝔻 : Category ℓ ℓ) where
|
module CatExponential {ℓ : Level} (ℂ 𝔻 : Category ℓ ℓ) where
|
||||||
private
|
private
|
||||||
open Data.Product
|
open Data.Product
|
||||||
open import Cat.Categories.Fun
|
open import Cat.Categories.Fun
|
||||||
module ℂ = Category ℂ
|
module ℂ = Category ℂ
|
||||||
module 𝔻 = Category 𝔻
|
module 𝔻 = Category 𝔻
|
||||||
|
Categoryℓ = Category ℓ ℓ
|
||||||
|
open Fun ℂ 𝔻 renaming (identity to idN)
|
||||||
|
|
||||||
Categoryℓ = Category ℓ ℓ
|
|
||||||
open Fun ℂ 𝔻 renaming (identity to idN)
|
|
||||||
private
|
|
||||||
omap : Functor ℂ 𝔻 × Object ℂ → Object 𝔻
|
omap : Functor ℂ 𝔻 × Object ℂ → Object 𝔻
|
||||||
omap (F , A) = F.omap A
|
omap (F , A) = Functor.omap F A
|
||||||
where
|
|
||||||
module F = Functor F
|
|
||||||
|
|
||||||
prodObj : Categoryℓ
|
-- The exponential object
|
||||||
prodObj = Fun
|
object : Categoryℓ
|
||||||
|
object = Fun
|
||||||
|
|
||||||
module _ {dom cod : Functor ℂ 𝔻 × Object ℂ} where
|
module _ {dom cod : Functor ℂ 𝔻 × Object ℂ} where
|
||||||
private
|
private
|
||||||
|
@ -215,15 +226,10 @@ module CatExponential {ℓ : Level} (ℂ 𝔻 : Category ℓ ℓ) where
|
||||||
l = 𝔻 [ θB ∘ F.fmap f ]
|
l = 𝔻 [ θB ∘ F.fmap f ]
|
||||||
r : 𝔻 [ F.omap A , G.omap B ]
|
r : 𝔻 [ F.omap A , G.omap B ]
|
||||||
r = 𝔻 [ G.fmap f ∘ θA ]
|
r = 𝔻 [ G.fmap f ∘ θA ]
|
||||||
-- There are two choices at this point,
|
|
||||||
-- but I suppose the whole point is that
|
|
||||||
-- by `θNat f` we have `l ≡ r`
|
|
||||||
-- lem : 𝔻 [ θ B ∘ F .fmap f ] ≡ 𝔻 [ G .fmap f ∘ θ A ]
|
|
||||||
-- lem = θNat f
|
|
||||||
result : 𝔻 [ F.omap A , G.omap B ]
|
result : 𝔻 [ F.omap A , G.omap B ]
|
||||||
result = l
|
result = l
|
||||||
|
|
||||||
open CatProduct renaming (obj to _×p_) using ()
|
open CatProduct renaming (object to _⊗_) using ()
|
||||||
|
|
||||||
module _ {c : Functor ℂ 𝔻 × Object ℂ} where
|
module _ {c : Functor ℂ 𝔻 × Object ℂ} where
|
||||||
private
|
private
|
||||||
|
@ -234,7 +240,7 @@ module CatExponential {ℓ : Level} (ℂ 𝔻 : Category ℓ ℓ) where
|
||||||
|
|
||||||
ident : fmap {c} {c} (NT.identity F , 𝟙 ℂ {A = proj₂ c}) ≡ 𝟙 𝔻
|
ident : fmap {c} {c} (NT.identity F , 𝟙 ℂ {A = proj₂ c}) ≡ 𝟙 𝔻
|
||||||
ident = begin
|
ident = begin
|
||||||
fmap {c} {c} (𝟙 (prodObj ×p ℂ) {c}) ≡⟨⟩
|
fmap {c} {c} (𝟙 (object ⊗ ℂ) {c}) ≡⟨⟩
|
||||||
fmap {c} {c} (idN F , 𝟙 ℂ) ≡⟨⟩
|
fmap {c} {c} (idN F , 𝟙 ℂ) ≡⟨⟩
|
||||||
𝔻 [ identityTrans F C ∘ F.fmap (𝟙 ℂ)] ≡⟨⟩
|
𝔻 [ identityTrans F C ∘ F.fmap (𝟙 ℂ)] ≡⟨⟩
|
||||||
𝔻 [ 𝟙 𝔻 ∘ F.fmap (𝟙 ℂ)] ≡⟨ proj₂ 𝔻.isIdentity ⟩
|
𝔻 [ 𝟙 𝔻 ∘ F.fmap (𝟙 ℂ)] ≡⟨ proj₂ 𝔻.isIdentity ⟩
|
||||||
|
@ -254,8 +260,6 @@ module CatExponential {ℓ : Level} (ℂ 𝔻 : Category ℓ ℓ) where
|
||||||
module F = Functor F
|
module F = Functor F
|
||||||
module G = Functor G
|
module G = Functor G
|
||||||
module H = Functor H
|
module H = Functor H
|
||||||
-- Not entirely clear what this is at this point:
|
|
||||||
_P⊕_ = Category._∘_ (prodObj ×p ℂ) {F×A} {G×B} {H×C}
|
|
||||||
|
|
||||||
module _
|
module _
|
||||||
-- NaturalTransformation F G × ℂ .Arrow A B
|
-- NaturalTransformation F G × ℂ .Arrow A B
|
||||||
|
@ -305,7 +309,7 @@ module CatExponential {ℓ : Level} (ℂ 𝔻 : Category ℓ ℓ) where
|
||||||
≡⟨ cong (λ φ → 𝔻 [ 𝔻 [ η C ∘ G.fmap g ] ∘ φ ]) (sym (θNat f)) ⟩
|
≡⟨ cong (λ φ → 𝔻 [ 𝔻 [ η C ∘ G.fmap g ] ∘ φ ]) (sym (θNat f)) ⟩
|
||||||
𝔻 [ 𝔻 [ η C ∘ G.fmap g ] ∘ 𝔻 [ θ B ∘ F.fmap f ] ] ∎
|
𝔻 [ 𝔻 [ η C ∘ G.fmap g ] ∘ 𝔻 [ θ B ∘ F.fmap f ] ] ∎
|
||||||
|
|
||||||
eval : Functor (CatProduct.obj prodObj ℂ) 𝔻
|
eval : Functor (CatProduct.object object ℂ) 𝔻
|
||||||
eval = record
|
eval = record
|
||||||
{ raw = record
|
{ raw = record
|
||||||
{ omap = omap
|
{ omap = omap
|
||||||
|
@ -317,14 +321,12 @@ module CatExponential {ℓ : Level} (ℂ 𝔻 : Category ℓ ℓ) where
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
module _ (𝔸 : Category ℓ ℓ) (F : Functor (𝔸 ×p ℂ) 𝔻) where
|
module _ (𝔸 : Category ℓ ℓ) (F : Functor (𝔸 ⊗ ℂ) 𝔻) where
|
||||||
-- open HasProducts (hasProducts {ℓ} {ℓ} unprovable) renaming (_|×|_ to parallelProduct)
|
|
||||||
|
|
||||||
postulate
|
postulate
|
||||||
parallelProduct
|
parallelProduct
|
||||||
: Functor 𝔸 prodObj → Functor ℂ ℂ
|
: Functor 𝔸 object → Functor ℂ ℂ
|
||||||
→ Functor (𝔸 ×p ℂ) (prodObj ×p ℂ)
|
→ Functor (𝔸 ⊗ ℂ) (object ⊗ ℂ)
|
||||||
transpose : Functor 𝔸 prodObj
|
transpose : Functor 𝔸 object
|
||||||
eq : F[ eval ∘ (parallelProduct transpose (identity {C = ℂ})) ] ≡ F
|
eq : F[ eval ∘ (parallelProduct transpose (identity {C = ℂ})) ] ≡ F
|
||||||
-- eq : F[ :eval: ∘ {!!} ] ≡ F
|
-- eq : F[ :eval: ∘ {!!} ] ≡ F
|
||||||
-- eq : Catℓ [ :eval: ∘ (HasProducts._|×|_ hasProducts transpose (𝟙 Catℓ {o = ℂ})) ] ≡ F
|
-- eq : Catℓ [ :eval: ∘ (HasProducts._|×|_ hasProducts transpose (𝟙 Catℓ {o = ℂ})) ] ≡ F
|
||||||
|
@ -339,39 +341,30 @@ module CatExponential {ℓ : Level} (ℂ 𝔻 : Category ℓ ℓ) where
|
||||||
-- :eval: ∘ (parallelProduct F~ (𝟙 Catℓ {o = ℂ}))] ≡ F) catTranspose =
|
-- :eval: ∘ (parallelProduct F~ (𝟙 Catℓ {o = ℂ}))] ≡ F) catTranspose =
|
||||||
-- transpose , eq
|
-- transpose , eq
|
||||||
|
|
||||||
|
-- We don't care about filling out the holes below since they are anyways hidden
|
||||||
|
-- behind an unprovable statement.
|
||||||
module _ (ℓ : Level) (unprovable : IsCategory (RawCat ℓ ℓ)) where
|
module _ (ℓ : Level) (unprovable : IsCategory (RawCat ℓ ℓ)) where
|
||||||
private
|
private
|
||||||
Catℓ : Category (lsuc (ℓ ⊔ ℓ)) (ℓ ⊔ ℓ)
|
Catℓ : Category (lsuc (ℓ ⊔ ℓ)) (ℓ ⊔ ℓ)
|
||||||
Catℓ = Cat ℓ ℓ unprovable
|
Catℓ = Cat ℓ ℓ unprovable
|
||||||
module _ (ℂ 𝔻 : Category ℓ ℓ) where
|
|
||||||
open CatExponential ℂ 𝔻 using (prodObj ; eval)
|
|
||||||
-- Putting in the type annotation causes Agda to loop indefinitely.
|
|
||||||
-- eval' : Functor (CatProduct.obj prodObj ℂ) 𝔻
|
|
||||||
-- Likewise, using it below also results in this.
|
|
||||||
eval' : _
|
|
||||||
eval' = eval
|
|
||||||
-- private
|
|
||||||
-- -- module _ (ℂ 𝔻 : Category ℓ ℓ) where
|
|
||||||
-- postulate :isExponential: : IsExponential Catℓ ℂ 𝔻 prodObj :eval:
|
|
||||||
-- -- :isExponential: : IsExponential Catℓ ℂ 𝔻 :obj: :eval:
|
|
||||||
-- -- :isExponential: = {!catTranspose!}
|
|
||||||
-- -- where
|
|
||||||
-- -- open HasProducts (hasProducts {ℓ} {ℓ} unprovable) using (_|×|_)
|
|
||||||
-- -- :isExponential: = λ 𝔸 F → transpose 𝔸 F , eq' 𝔸 F
|
|
||||||
|
|
||||||
-- -- :exponent: : Exponential (Cat ℓ ℓ) A B
|
module _ (ℂ 𝔻 : Category ℓ ℓ) where
|
||||||
exponent : Exponential Catℓ ℂ 𝔻
|
module CatExp = CatExponential ℂ 𝔻
|
||||||
exponent = record
|
_⊗_ = CatProduct.object
|
||||||
{ obj = prodObj
|
|
||||||
; eval = {!evalll'!}
|
-- Filling the hole causes Agda to loop indefinitely.
|
||||||
; isExponential = {!:isExponential:!}
|
eval : Functor (CatExp.object ⊗ ℂ) 𝔻
|
||||||
}
|
eval = {!CatExp.eval!}
|
||||||
where
|
|
||||||
open HasProducts (hasProducts unprovable) renaming (_×_ to _×p_)
|
isExponential : IsExponential Catℓ ℂ 𝔻 CatExp.object eval
|
||||||
open import Cat.Categories.Fun
|
isExponential = {!CatExp.isExponential!}
|
||||||
open Fun
|
|
||||||
-- _×p_ = CatProduct.obj -- prodObj ℂ
|
exponent : Exponential Catℓ ℂ 𝔻
|
||||||
-- eval' : Functor CatP.obj 𝔻
|
exponent = record
|
||||||
|
{ obj = CatExp.object
|
||||||
|
; eval = eval
|
||||||
|
; isExponential = isExponential
|
||||||
|
}
|
||||||
|
|
||||||
hasExponentials : HasExponentials Catℓ
|
hasExponentials : HasExponentials Catℓ
|
||||||
hasExponentials = record { exponent = exponent }
|
hasExponentials = record { exponent = exponent }
|
||||||
|
|
Loading…
Reference in a new issue