Terminal objects are propositional

This commit is contained in:
Frederik Hanghøj Iversen 2018-03-29 14:26:47 +02:00
parent af25db7e31
commit 52ac9b4b78

View file

@ -255,7 +255,35 @@ record IsCategory {a b : Level} ( : RawCategory a b) : Set (lsuc
-- this needs the univalence of the category -- this needs the univalence of the category
propTerminal : isProp Terminal propTerminal : isProp Terminal
propTerminal = {!!} propTerminal Xt Yt = res
where
open Σ Xt renaming (proj₁ to X ; proj₂ to Xit)
open Σ Yt renaming (proj₁ to Y ; proj₂ to Yit)
open Σ (Xit {Y}) renaming (proj₁ to Y→X) using ()
open Σ (Yit {X}) renaming (proj₁ to X→Y) using ()
open import Cat.Equivalence hiding (_≅_)
-- Need to show `left` and `right`, what we know is that the arrows are
-- unique. Well, I know that if I compose these two arrows they must give
-- the identity, since also the identity is the unique such arrow (by X
-- and Y both being terminal objects.)
Xprop : isProp (Arrow X X)
Xprop f g = trans (sym (snd Xit f)) (snd Xit g)
Yprop : isProp (Arrow Y Y)
Yprop f g = trans (sym (snd Yit f)) (snd Yit g)
left : Y→X X→Y 𝟙
left = Xprop _ _
right : X→Y Y→X 𝟙
right = Yprop _ _
iso : X Y
iso = X→Y , Y→X , left , right
fromIso : X Y X Y
fromIso = fst (Equiv≃.toIso (X Y) (X Y) univalent)
p0 : X Y
p0 = fromIso iso
p1 : (λ i IsTerminal (p0 i)) [ Xit Yit ]
p1 = lemPropF propIsTerminal p0
res : Xt Yt
res i = p0 i , p1 i
-- Merely the dual of the above statement. -- Merely the dual of the above statement.
propIsInitial : I isProp (IsInitial I) propIsInitial : I isProp (IsInitial I)