Use arrowIsSet
to simplify equality constructor for functors
This commit is contained in:
parent
9349b37550
commit
56d689fb4b
|
@ -1,4 +1,4 @@
|
|||
{-# OPTIONS --allow-unsolved-metas #-}
|
||||
{-# OPTIONS --allow-unsolved-metas --cubical #-}
|
||||
module Cat.Categories.Fun where
|
||||
|
||||
open import Agda.Primitive
|
||||
|
@ -9,6 +9,9 @@ open import Data.Product
|
|||
open import Cat.Category
|
||||
open import Cat.Category.Functor
|
||||
|
||||
open import Cat.Equality
|
||||
open Equality.Data.Product
|
||||
|
||||
module _ {ℓc ℓc' ℓd ℓd' : Level} {ℂ : Category ℓc ℓc'} {𝔻 : Category ℓd ℓd'} where
|
||||
open Category hiding ( _∘_ ; Arrow )
|
||||
open Functor
|
||||
|
@ -86,12 +89,20 @@ module _ {ℓc ℓc' ℓd ℓd' : Level} {ℂ : Category ℓc ℓc'} {𝔻 : Cat
|
|||
NatComp = _:⊕:_
|
||||
|
||||
private
|
||||
module _ {F G : Functor ℂ 𝔻} where
|
||||
naturalTransformationIsSets : IsSet (NaturalTransformation F G)
|
||||
naturalTransformationIsSets {θ , θNat} {η , ηNat} p q i j
|
||||
= (λ C → 𝔻.arrowIsSet (λ l → proj₁ (p l) C) (λ l → proj₁ (q l) C) i j)
|
||||
, λ f k → 𝔻.arrowIsSet (λ l → proj₂ (p l) f {!!}) (λ l → proj₂ (p l) f {!!}) {!!} {!!}
|
||||
where
|
||||
module 𝔻 = IsCategory (isCategory 𝔻)
|
||||
|
||||
module _ {A B C D : Functor ℂ 𝔻} {f : NaturalTransformation A B}
|
||||
{g : NaturalTransformation B C} {h : NaturalTransformation C D} where
|
||||
_g⊕f_ = _:⊕:_ {A} {B} {C}
|
||||
_h⊕g_ = _:⊕:_ {B} {C} {D}
|
||||
:assoc: : (_:⊕:_ {A} {C} {D} h (_:⊕:_ {A} {B} {C} g f)) ≡ (_:⊕:_ {A} {B} {D} (_:⊕:_ {B} {C} {D} h g) f)
|
||||
:assoc: = {!!}
|
||||
:assoc: = Σ≡ (funExt λ x → {!Fun.arrowIsSet!}) {!!}
|
||||
module _ {A B : Functor ℂ 𝔻} {f : NaturalTransformation A B} where
|
||||
ident-r : (_:⊕:_ {A} {A} {B} f (identityNat A)) ≡ f
|
||||
ident-r = {!!}
|
||||
|
@ -116,7 +127,7 @@ module _ {ℓc ℓc' ℓd ℓd' : Level} {ℂ : Category ℓc ℓc'} {𝔻 : Cat
|
|||
:isCategory: = record
|
||||
{ assoc = λ {A B C D} → :assoc: {A} {B} {C} {D}
|
||||
; ident = λ {A B} → :ident: {A} {B}
|
||||
; arrowIsSet = {!!}
|
||||
; arrowIsSet = λ {F} {G} → naturalTransformationIsSets {F} {G}
|
||||
; univalent = {!!}
|
||||
}
|
||||
|
||||
|
|
|
@ -26,6 +26,10 @@ syntax ∃!-syntax (λ x → B) = ∃![ x ] B
|
|||
IsSet : {ℓ : Level} (A : Set ℓ) → Set ℓ
|
||||
IsSet A = {x y : A} → (p q : x ≡ y) → p ≡ q
|
||||
|
||||
-- This follows from [HoTT-book: §7.1.10]
|
||||
-- Andrea says the proof is in `cubical` but I can't find it.
|
||||
postulate isSetIsProp : {ℓ : Level} → {A : Set ℓ} → isProp (IsSet A)
|
||||
|
||||
record RawCategory (ℓ ℓ' : Level) : Set (lsuc (ℓ' ⊔ ℓ)) where
|
||||
-- adding no-eta-equality can speed up type-checking.
|
||||
-- ONLY IF you define your categories with copatterns though.
|
||||
|
@ -53,6 +57,7 @@ record RawCategory (ℓ ℓ' : Level) : Set (lsuc (ℓ' ⊔ ℓ)) where
|
|||
-- (univalent).
|
||||
record IsCategory {ℓa ℓb : Level} (ℂ : RawCategory ℓa ℓb) : Set (lsuc (ℓa ⊔ ℓb)) where
|
||||
open RawCategory ℂ
|
||||
module Raw = RawCategory ℂ
|
||||
field
|
||||
assoc : {A B C D : Object} { f : Arrow A B } { g : Arrow B C } { h : Arrow C D }
|
||||
→ h ∘ (g ∘ f) ≡ (h ∘ g) ∘ f
|
||||
|
@ -91,22 +96,40 @@ module _ {ℓa} {ℓb} {ℂ : RawCategory ℓa ℓb} where
|
|||
-- This lemma will be useful to prove the equality of two categories.
|
||||
IsCategory-is-prop : isProp (IsCategory ℂ)
|
||||
IsCategory-is-prop x y i = record
|
||||
-- Why choose `x`'s `arrowIsSet`?
|
||||
{ assoc = x.arrowIsSet x.assoc y.assoc i
|
||||
; ident =
|
||||
( x.arrowIsSet (fst x.ident) (fst y.ident) i
|
||||
, x.arrowIsSet (snd x.ident) (snd y.ident) i
|
||||
)
|
||||
; arrowIsSet = λ p q →
|
||||
let
|
||||
golden : x.arrowIsSet p q ≡ y.arrowIsSet p q
|
||||
golden = {!!}
|
||||
in
|
||||
golden i
|
||||
; univalent = λ y₁ → {!!}
|
||||
; arrowIsSet = isSetIsProp x.arrowIsSet y.arrowIsSet i
|
||||
; univalent = {!!}
|
||||
}
|
||||
where
|
||||
module x = IsCategory x
|
||||
module y = IsCategory y
|
||||
xuni : x.Univalent
|
||||
xuni = x.univalent
|
||||
yuni : y.Univalent
|
||||
yuni = y.univalent
|
||||
open RawCategory ℂ
|
||||
T : I → Set (ℓa ⊔ ℓb)
|
||||
T i = {A B : Object} →
|
||||
isEquiv (A ≡ B) (A x.≅ B)
|
||||
(λ A≡B →
|
||||
transp
|
||||
(λ j →
|
||||
Σ-syntax (Arrow A (A≡B j))
|
||||
(λ f → Σ-syntax (Arrow (A≡B j) A) (λ g → g ∘ f ≡ 𝟙 × f ∘ g ≡ 𝟙)))
|
||||
( 𝟙
|
||||
, 𝟙
|
||||
, x.arrowIsSet (fst x.ident) (fst y.ident) i
|
||||
, x.arrowIsSet (snd x.ident) (snd y.ident) i
|
||||
)
|
||||
)
|
||||
eqUni : T [ xuni ≡ yuni ]
|
||||
eqUni = {!!}
|
||||
|
||||
|
||||
record Category (ℓa ℓb : Level) : Set (lsuc (ℓa ⊔ ℓb)) where
|
||||
field
|
||||
|
|
|
@ -1,3 +1,4 @@
|
|||
{-# OPTIONS --cubical #-}
|
||||
module Cat.Category.Functor where
|
||||
|
||||
open import Agda.Primitive
|
||||
|
@ -78,14 +79,11 @@ module _
|
|||
IsProp' : {ℓ : Level} (A : I → Set ℓ) → Set ℓ
|
||||
IsProp' A = (a0 : A i0) (a1 : A i1) → A [ a0 ≡ a1 ]
|
||||
|
||||
postulate IsFunctorIsProp' : IsProp' λ i → IsFunctor _ _ (F i)
|
||||
-- IsFunctorIsProp' isF0 isF1 i = record
|
||||
-- { ident = {!𝔻.arrowIsSet {!isF0.ident!} {!isF1.ident!} i!}
|
||||
-- ; distrib = {!𝔻.arrowIsSet {!isF0.distrib!} {!isF1.distrib!} i!}
|
||||
-- }
|
||||
-- where
|
||||
-- module isF0 = IsFunctor isF0
|
||||
-- module isF1 = IsFunctor isF1
|
||||
IsFunctorIsProp' : IsProp' λ i → IsFunctor _ _ (F i)
|
||||
IsFunctorIsProp' isF0 isF1 = lemPropF {B = IsFunctor ℂ 𝔻}
|
||||
(\ F → IsFunctorIsProp {F = F}) (\ i → F i)
|
||||
where
|
||||
open import Cubical.GradLemma using (lemPropF)
|
||||
|
||||
module _ {ℓ ℓ' : Level} {ℂ 𝔻 : Category ℓ ℓ'} where
|
||||
Functor≡ : {F G : Functor ℂ 𝔻}
|
||||
|
@ -95,14 +93,13 @@ module _ {ℓ ℓ' : Level} {ℂ 𝔻 : Category ℓ ℓ'} where
|
|||
→ F ≡ G
|
||||
Functor≡ {F} {G} eq* eq→ i = record
|
||||
{ raw = eqR i
|
||||
; isFunctor = f i
|
||||
; isFunctor = eqIsF i
|
||||
}
|
||||
where
|
||||
eqR : raw F ≡ raw G
|
||||
eqR i = record { func* = eq* i ; func→ = eq→ i }
|
||||
postulate T : isSet (IsFunctor _ _ (raw F))
|
||||
f : (λ i → IsFunctor ℂ 𝔻 (eqR i)) [ isFunctor F ≡ isFunctor G ]
|
||||
f = IsFunctorIsProp' (isFunctor F) (isFunctor G)
|
||||
eqIsF : (λ i → IsFunctor ℂ 𝔻 (eqR i)) [ isFunctor F ≡ isFunctor G ]
|
||||
eqIsF = IsFunctorIsProp' (isFunctor F) (isFunctor G)
|
||||
|
||||
module _ {ℓ ℓ' : Level} {A B C : Category ℓ ℓ'} (F : Functor B C) (G : Functor A B) where
|
||||
private
|
||||
|
|
Loading…
Reference in a new issue