Almost prove that arrows are sets in the cateogry of families
This commit is contained in:
parent
a321a9c8b2
commit
5796b791b8
|
@ -40,12 +40,29 @@ module _ (ℓa ℓb : Level) where
|
||||||
isIdentity : IsIdentity λ { {A} → 𝟙 {A} }
|
isIdentity : IsIdentity λ { {A} → 𝟙 {A} }
|
||||||
isIdentity = (Σ≡ refl refl) , Σ≡ refl refl
|
isIdentity = (Σ≡ refl refl) , Σ≡ refl refl
|
||||||
|
|
||||||
|
open import Cubical.NType.Properties
|
||||||
|
open import Cubical.Sigma
|
||||||
instance
|
instance
|
||||||
isCategory : IsCategory RawFam
|
isCategory : IsCategory RawFam
|
||||||
isCategory = record
|
isCategory = record
|
||||||
{ isAssociative = λ {A} {B} {C} {D} {f} {g} {h} → isAssociative {A} {B} {C} {D} {f} {g} {h}
|
{ isAssociative = λ {A} {B} {C} {D} {f} {g} {h} → isAssociative {A} {B} {C} {D} {f} {g} {h}
|
||||||
; isIdentity = λ {A} {B} {f} → isIdentity {A} {B} {f = f}
|
; isIdentity = λ {A} {B} {f} → isIdentity {A} {B} {f = f}
|
||||||
; arrowsAreSets = {!!}
|
; arrowsAreSets = λ {
|
||||||
|
{((A , hA) , famA)}
|
||||||
|
{((B , hB) , famB)}
|
||||||
|
→ setSig
|
||||||
|
{sA = setPi λ _ → hB}
|
||||||
|
{sB = λ f →
|
||||||
|
let
|
||||||
|
helpr : isSet ((a : A) → proj₁ (famA a) → proj₁ (famB (f a)))
|
||||||
|
helpr = setPi λ a → setPi λ _ → proj₂ (famB (f a))
|
||||||
|
-- It's almost like above, but where the first argument is
|
||||||
|
-- implicit.
|
||||||
|
res : isSet ({a : A} → proj₁ (famA a) → proj₁ (famB (f a)))
|
||||||
|
res = {!!}
|
||||||
|
in res
|
||||||
|
}
|
||||||
|
}
|
||||||
; univalent = {!!}
|
; univalent = {!!}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
Loading…
Reference in a new issue